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Abstract

Time series of mortality by cause of deaths may present, in the year of ICD revision,

disruptions which are undue to variability in the mortality trend. Assessing the

presence of these eventual disruptions is of great help for drawing conclusions on

redistribution of death counts among other causes of death and, consequently, for the

estimation of continuous mortality series. Our approach aims to detect statistically

significant discontinuity in an ICD-revision year by the mean of (back-)forecasting

the estimated trend in the revision year. The estimation of the trends is done

via smoothing techniques on the standardized deaths within a Poisson framework

for accounting the variability of the phenomenon. A simulation study is given to

demonstrate the performance of the method. Actual applications on West German

cause-specific mortality data illustrate the outcome of the approach.
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1 Introduction

Periodic revisions of the international classification of diseases (ICD) are a known issue

in long-term cause of death analyses. The only efficient method to deal with the ruptures

developed so far emplyes a systematic comparison of medical and statistical content across

ICD revisions and is known to perform the better the greater is the detail of the ICD

grouping (Meslé and Vallin, 1996; Pechholdová, 2009). An integral part of the method

consists of a systematic inspection of continuity performed at several steps of the method.

These checks are the only way to detect ruptures which cannot be anticipated from any

available information source (such as the ICD manuals themselves, bridge coding studies

or WHO ICD10 to ICD9 mapping tool).

However, a great level of detail represents a great deal of time series to be checked,

especially when the series are broken down by age and sex. Moreover, the issue of small

death counts appears in some combinations of cause, age, and sex. Among several methods

tested and used, visual inspection has yielded the best results. Given the subjectiveness

and the time load represented by the visual inspection, we are proposing a statistically-

oriented alternative based on prediction of the series and a cutoff level of decision whether

the actual and the reconstructed data form an acceptably coherent series. We believe this

method can replace, at least in a large part, the visual inspection, and facilitate the

process of bridging the two ICD revisions at its best practice.

2 Method

We formulate the method for a specific cause of death and sex. The presence of eventual

disruption is assessed for the whole age range of the population.

Let D = (dij) be the matrix of deaths at age i, i = 1, . . . ,m and year j, j = 1, . . . , n

for a specific cause of death. Likewise the matrix E = (eij) contains the exposures over

the same dimensions for the whole population. The rows of D and E are labeled by age(-

group) of death, a′ = (a1, . . . , am), and the columns by year of death, y′ = (y1, . . . , yn).

An additional m × n matrix of cause-specific death rates can easily be computed:

M =
(
mij =

dij
eij

)
.

2.1 Standardizing data

We aim to gauge the presence of disruption devoid of changes in age structure of the

population. We thus decide to compute the standardized death rates, i.e. death rates of

a population adjusted to a standard age structure, p = (pi) :
∑

i pi = 1.
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In formula the standardized death rates are given by:

MS = diag(p) · M

where diag(p) is the m×m diagonal matrix with pi as entries. In the following we will use

a “standard European population” defined by the World Health Organization (WHO).

Other options are equally suitable.

In order to obtain the age-standardized crude death rate and the corresponding total

expected deaths over years, we can now sum up over ages MS and multiply the outcomes

by a given factor κ:

CDRS = 1m · MS

DS = κ CDRS

with 1m a vector of 1s of length m.

In demography κ = 106 is commonly used when dealing with cause of death analyses.

This option leads to a straightforward interpretation of the standardized crude death rates

as number of deaths over a million of individuals. Instead of following this convention, we

decided to account for the size of the population in hands: κ will be equal to the average

of the total population size from E. In this manner the number of standardized expected

deathsDS can be interpreted as the total number of deaths from a specific population and

cause of death, only devoid of the changes in the age structure. Along these lines, we will

model the trend of DS, and its eventual disruption will thus be assessed accounting for

stochasticity of the actual phenomenon. The same distance between neighboring values

of DS for two different populations will be considered differently if the sizes of these

populations are different.

As example, figure 1 presents a selected cause of death from the West German series

which will be used in following demonstrations: acute pulmonary heart disease (ICD9

code 415). In West Germany, the ICD revision between the 8th and the 9th classification

took place between 1978 and 1979. The developments of actual death rates (left panel)

does not show any particular disruption in the revision year. On the right panel, the

trend of the expected standardized deaths for all ages reveals a clear jump in 1979. Our

aim is to assess whether this increment is statistically significant. Once the decision is

adopted, different methodologies could be employed for redistributing death counts from

acute pulmonary heart disease to related causes, in order to create coherent mortality

time series.
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Figure 1: Actual death rates in logarithmic scale (left panel) and standardized deaths
(right panel). West Germany. 1969-1997, 20 age-groups, both ages combined, standard
European population, κ = 62531434. ICD-revision in 1979.

2.2 Smoothing and forecasting data

Assessment of discontinuity needs to be done essentially at the change of the classification.

Therefore we will separately consider the trends before and after the revision year. Let

DS
1 and DS

2 the actual standardized deaths for these two periods: j = 1, . . . , n1 and

j = n1 +1, . . . , n. Instead of comparing directly the standardized deaths, we assume them

to be realization of a Poisson distribution with a smooth force of mortality multiplied by

the factor κ repeated for the number of associated years:

DS
1 ∼ P(µ1 κn1) and DS

2 ∼ P(µ2 κn2) .

In this way we have a statistical framework for modelingDS
1 andDS

2 accounting for the

size of the population in a suitable manner. Without going into details, a P -splines model

is applied on both periods estimating the smooth mortality trends µ̂1 and µ̂2 (Camarda,

2012; Eilers and Marx, 1996). In particular, this technique can be easily embedded in a

Poisson setting, allowing us to smooth our data accounting for the population size via κ,

as offset. The more dealing with Poisson counts, the smoother operates on the logarithmic

of the force of mortality: ln(µ) = η.

The value of κ is crucial for determining the amount of smoothness which is optimized

here by the Bayesian Information Criterion. In a nutshell, the larger the value of κ, the

larger are the expected standardized deaths. Since we work in a Poisson setting, the larger

the value of counts, the more any statistical model will be prone to trust actual pattern

because it will detect small variability compared to the trends. Therefore a large κ (i.e. a

large population) will lead to a fitted curves that will follow the standardized deaths more
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closely, i.e. given the same trend, a larger κ leads to a rougher fitted curve. Following

these arguments, incorporating the actual population size into the computation of DS

becomes attractive from a modeling point of view as well as from its interpretation.

Once the trends are estimated, we need to evaluate the smooth curves at the revision

year. Instead of taking η̂1 and η̂2 for the last and first year of their period (yn1 and

yn1+1 respectively), we (back-)forecast both fitted curves in the mid-year yr = [yn1 + 0.5].

In P -splines models, forecasting is a natural consequence of the smoothing process, and

extrapolation for half year does not pose any issue in terms of reliability of the estimates

(Currie et al., 2004).

Given the estimates, we can compute the expected disruption in the revision year:

∆ = η̂1[yr]− η̂2[yr] .

Our aim is now to decide whether ∆ is statistically different from 0, i.e. we have a

clear disruption in the revision year.

2.3 Testing disruption

An additional advantage of the P -splines methodology lays in the capability to easily

compute diagnostics such as the standard errors of our estimates. In the conjunction

time-point yr, we can compute the standard errors SEη̂1[yr] and SEη̂2[yr].

This convenience is essential for testing the value of ∆. Specifically, for a given confi-

dence level 1−α, we can calculate the upper and lower confidence limits for the estimated

difference as follows:

L∆ =
(
η̂1[yr]− c1

α · SEη̂1[yr]

)
−
(
η̂2[yr] + c2

α · SEη̂2[yr]

)
U∆ =

(
η̂1[yr] + c1

α · SEη̂1[yr]

)
−
(
η̂2[yr]− c2

α · SEη̂2[yr]

)
,

where c1
α and c2

α denote the
(
1− α

2

)
percentile of two Student’s t-distributions with n1 and

n2 degrees of freedom, respectively. We opted for the t-distributions given the relatively

few data-points (i.e. years) in the large majority of the cause-specific mortality time series.

Once L∆ and U∆ are computed, we can just check whether this confidence interval

contains the value zero. If so, we can reject the hypothesis of disruption and assume the

two trends as part of a common pattern. Alternatively, if zero is not between L∆ and U∆,

we can deduce the presence of a disruption (given a confidence level) and consequently

search for possible redistribution of death counts among causes of death.

The proposed approach has similarities with the Regression Discontinuity Design

which is a quasi-experimental pretest-posttest design that captures the causal effects of

interventions by assigning a threshold above or below which an intervention is assigned.
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For a fuller treatment of the method, we refer to Imbens and Lemieux (2010).

3 Simulation

Before we apply the model to a demographic dataset, we want to demonstrate the per-

formance of the method in a simulation study.

We simulated 10000 instances for 12 different scenarios in which we varied amount

of smoothness of the true trend, size of the population (i.e. size of the death counts),

and amplitude of the true disruption. Specifically we have two different sample sizes

(N=100 and N=500 which represent the minimum death counts in the dataset and leads to

different final sizes), two different curves (two exponentials with either minor or strong sine

signal) and three different scenarios concerning the presence of disruption: no disruption,

a disruption equal to two and five times the variance in the data.

The idea is to check when and how often the proposed approach fails in finding disrup-

tion when in reality there are and vice versa. Outcomes are given in Figure 2. The solid

lines represent the true values of the standardized deaths, the dots an instance among the

10000 datasets we simulated and colors depict the different classification periods.
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Figure 2: The effect of various sample size, smoothness and disruption level on the results
of detection

The percentages printed in each panel of Figure 2 represent the number of times
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(among 10000 times) the approach has not found a disruption with 80% confidence level.

The confidence level is selected based essentially on experience, i.e. compliance with the

results of visual inspection.

A perfect model would have 100% in the first rows and 0% in the others. Of course

this is not the case (and it won’t be the case with any method). Nevertheless several

messages can be read:

• an increasing number of counts leads to better outcomes: see decreasing percentage

of “disruption not found” from the first (second) to the third (forth) column in the

scenarios in which we assumed the presence of disruptions (second and third row);

• a smoother latent trend tends to hide eventual disruptions, especially with small

sample size: see the left-bottom panel where with a relatively big true-disruption,

the approach overlooks about 56% of them;

• a larger disruption is better found by the proposed method: for all columns we have

a decreasing percentage of “disruption not found”;

• if we have got a large dataset and clear disruption, the approach will detect 99.92%

of them within an unsmooth trend and 81.83% of them when the trend is smoother;

• the effect of multiply by 5 the sample size is similar to having a disruption within

an unsmoother trend: see the similar percentages in the last two rows between the

second and third column.

4 Actual Application

Time series of West German cause-specific mortality are analyzed in this section. Figure 3

presents actual and fitted values for acute pulmonary heart disease. Moreover we add the

estimated points at the conjunction time-point between two classifications (1978.5) along

with the associated 80% confidence intervals.

The estimated value for ∆ is equal -0.1594. This is the expected difference in 1978.5

between the estimated log standardized crude death rates from the fitted curves. The

associated confidence interval is [−0.2262;−0.0926]. This interval does not include zero,

hence we could reject the hypothesis that the two trends belong to a common pattern,

i.e. we have a statistically significant disruption in the trend of mortality from acute

pulmonary heart disease at the moment of the change between the 8th and 9th ICD

revisions.

Furthermore routines for building each part of the model were implemented in R (R

Development Core Team, 2013) and, together with user-friendly examples, they are avail-

able from the first author upon request. In our implemented R functions several arguments
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Figure 3: Actual and fitted standardized deaths by P -splines. Extrapolated trends in
1978.5 along with 80% confidence intervals. West Germany. 1969-1997, 20 age-groups,
both ages combined, standard European population, κ = 62531434. ICD-revision in 1979.

could be called and many outcomes could be extracted (see appendix). Particularly useful

for facilitating the process of bridging the two ICD revision is the automatic plotting of

the actual and fitted data along with a flagged legend which immediately informs about

the presence of disruption.

Any researcher could easily employ our R-function with his/her datasets and quickly

check which causes of death show significant ruptures and thereupon adjust them with

suitable reassignment of deaths to other causes. Figure 4 presents four different outcomes

from the same dataset as given by the mentioned R-function. We modified the confidence

level (80% and 95%) as well as the multiplicative factor κ (the proposed one with the

average population and the conventional value of 106). Whereas remarkable differences

are due to varying the level of κ, changing the confidence level does not lead to different

decision with respect to the presence of disruption, at least in this dataset: see the boxes

on the top-right corner of the panels which have automatically a red background in case

of statistically significant disruption.

5 Concluding remarks

The proposed method of rupture detection in mortality time series based on P -splines

smoothing and taking into account the actual size of population has yielded satisfactory

results on the sample of tested causes of death. As next step, the method will be applied

on a large dataset of time series of causes of death in France at the most detailed ICD
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Figure 4: Actual and fitted standardized deaths by P -splines. Extrapolated trends in
1978.5 along with 80% and 95% confidence intervals. Two different κ employed. West
Germany. 1969-1997, 20 age-groups, both ages combined, standard European population.
ICD-revision in 1979.

level. The method has ambitions to become an important part of automatized procedures

designed to facilitate the meticulous task of bridging two successive ICD revisions.
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Appendix: Software considerations

In this appendix we briefly explain how to use the proposed method by an R-function

specially designed to carry out the analysis and available upon request.

We denote with D and E the input matrices of deaths and exposures over age-groups

and years. The argument p is also needed for providing the vector of standard population.

Finally the last required input concerns the length of the first ICD revision (n1).

Given these 4 arguments, the function is able to reproduce the proposed methodology

and return several important objects. The following code-snippet present the mentioned

function and all its arguments:

CheckDisruption <- function(D, E, p, n1,

y, cod, kappa, level=80,

plot=TRUE, Type=c("SD", "logSDR")){

[...]

}

The user can also modify the other arguments:

• y: a vector with the actual years

• cod: a string with the name of the cause of death

• kappa: the multiplicative factor. By default the average population from E

• level: the confidence level. By default 80%

• plot: whether a plot should be produced. By default the function will give you a

plot

• Type: whether the user prefer a plot with standardized deaths or standardized crude

death rates in a log scale

The arguments y, cod, plot and Type do not interfere with the final results. They

are only required to enhance the final plot according to the user’s wishes.

The function returns several objects such as the fitted standardized deaths, its stan-

dard errors, the estimated ∆ along with its confidence interval, etc.


