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ABSTRACT 

Background. The relationship between body mass index (BMI) and health develops over the life 

course.  There is increasing interest among researchers in modeling long-term changes in BMI 

and indentifying distinct BMI trajectory types in the population.  Traditionally, researchers have 

used fully parametric (regression) or semi-parametric (latent class) models, which required 

difficult-to-justify decisions that sometimes yielded conflicting findings.   

Objective. The aim is to identify clusters of long-term BMI curves among older adults and 

associated health correlates, using a novel nonparametric functional-data approach. 

Methods.  Data are from the Health and Retirement Study (N=9,893), a nationally 

representative panel survey of adults born in 1931-41.  BMI was collected in up to 10 waves 

between 1992 and 2010.    We utilize a cutting-edge functional data analysis for sparse 

longitudinal data, specifically hierarchical clustering of BMI functions estimated via the PACE 

algorithm.   

Results.  Three BMI trajectory clusters emerged for each gender: normal stable, overweight 

gaining, and overweight losing.  The initial health of the overweight gaining group in both 

genders was poorer than that of the normal stable group but their mortality was comparable.  

The overweight losing cluster experienced significantly poorer health at baseline and higher risk 

of mortality.   

Conclusions.  The BMI trajectories among older adults cluster into distinct types, with differing 

health risks.  The study highlights the potential of functional data analysis for BMI trajectories, 

as well as many other developmental and age-dependent processes relevant to obesity and 

health. 
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Long-Term Body Weight Trajectories and Health in Older Adults: Hierarchical Clustering 

of Functional Curves. 

The relationship between body weight and health evolves gradually over the life course 1.  

Correspondingly, researchers are increasingly examining long-term weight changes using 

longitudinal data with multiple BMI data points.  This represents a marked improvement over 

analyses using a measure of BMI at a single time point as a predictor of health outcomes.  

However, methodologically there is room for  innovative, more precise approaches to model 

weight trajectories. We analyze long-term BMI trajectories in an 18-year longitudinal study of a 

nationally-representative sample of older adults, using a new methodology: hierarchical 

clustering of functional curves. 

Studies have often used approaches that a priori categorized initial BMI level and BMI change.  

Researchers created multiple categories of BMI change, such as ‘gaining from normal weight to 

overweight’ or ‘losing weight from obese to overweight range’ to capture both level and change 

in weight 2-7. Although this approach allows for nuanced modeling of the level and change in 

BMI, results can vary depending on the selected thresholds.  Additionally, the approach does 

not reveal patterns of typical weight trajectories.  Discovering such typical trajectories is 

important in order to classify individuals into various risk levels and target interventions 

accordingly. 

It is known that distinct BMI trajectory types exist among older adults 8-9 and at younger ages 10-

11.   However, the number of the distinct BMI trajectory types, their shapes, and their health 

correlates remain open questions.  This is largely because the growth mixture models used to 

estimate the trajectory classes require analysts to make critical and difficult-to-justify 

assumptions (and thus decisions) about the data.   

For instance, two recent studies 12-13 used the same data on older adults from the Health and 

Retirement Study.  Both estimated latent growth mixture models to determine BMI trajectory 
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groups in the older population.   However, the two studies made different assumptions in the 

models – in particular, Zheng et al. 13 restricted the residual variance of the growth factors in the 

trajectory groups to zero while Zajacova and Ailshire 12 did not.  These different approaches 

resulted in fundamentally different findings.  The first study reported five BMI trajectory classes 

with relatively modest change over time; the second study found three BMI trajectory classes 

with one relatively stable BMI group over time, and the other two marked by pronounced weight 

gain and loss, respectively.   

The present analysis uses hierarchical clustering of functional curves estimated via the PACE 

algorithm, a powerful, cutting-edge, nonparametric approach to analyzing longitudinal data.  The 

methodology has only recently been developed in the statistical literature and, to the best of our 

knowledge, this study is its first application for substantive (applied) questions. The BMI curves 

are estimated using Principal Components via Conditional Expectations (PACE) algorithm and 

clustered to identify typical BMI curves in the sample. We examine the health differences across 

these clusters. The findings thus provide a clear, data-driven and empirically grounded analysis 

of typical patterns of body weight trajectories in older adults, which can help inform public-health 

and clinical recommendations. 

MATERIALS AND METHODS 

Data 

We used data from the Health and Retirement Survey (HRS) 14.  The HRS, one of the leading 

sources of information on the health of older Americans, is a nationally representative panel 

survey of U.S. adults born between 1931 and 1941.  The sample cohort was first interviewed in 

1992 and re-interviewed every two years thereafter.  We use data through the 2010 interview, 

the most recent wave available, which provides up to ten measures of BMI and mortality follow-

up over 18 years of the study period.   We used version L of the dataset available from the 

RAND Corporation 15.   
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Sample definition.  After excluding 3 individuals who had no BMI information at any wave and 

286 individuals (2.8 percent) who had BMI values considered to be outliers (above 45 or below 

15 at any interview wave), the final sample size was N=9,893.     

Variables 

Body mass index (BMI) was calculated as weight (kg)/height (m) squared.  Height was self-

reported at the first interview; weight was self-reported at every interview.  For each individual, 

all available BMI data points were included to define the weight functions.   

Mortality followup has been collected throughout the study duration by HRS staff who obtained 

information about a respondent’s death from a spouse, another family member, friend, or other 

sources.  Individuals were coded as 0 if they survived or were believed to be alive through wave 

10 in 2010; 1 if they were known or believed to have died.  There were no missing values on 

this variable. 

Covariates included age, sex, and initial health status.  Age was included as a time-varying 

measure and served as the time axis for the BMI curves.  Sex was dichotomized; all analyses 

were estimated independently for men and women.  Initial health status was captured with two 

self-reported indicators.  Self-rated health (SRH) was measured on the standard 5-point scale 

from excellent (=1) to poor (=5).  The number of chronic conditions, which included highly 

prevalent conditions like hypertension, arthritis, cancer, and diabetes, was a count variable 

ranging from 0 up to 7.  Both health variables were included in analyses as continuous. 

Approach 

Hierarchical clustering of functional curves estimated via the PACE algorithm was used to 

identify groups of similar BMI curves.  We describe the method in a broad conceptual way and 

include references for readers interested in additional information about the methodology.   
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Functional data analysis (FDA) for sparse longitudinal data.  FDA is a flexible, nonparametric 

approach to modeling longitudinal data.  FDA was originally developed for dense data with 

thousands of measurements over time as may be available with weather information or from 

fMRI 16-17.    In contrast, social research longitudinal data, including the repeated BMI 

measurements in the Health and Retirement Study, is sparse in comparison and measured with 

error.  These characteristics necessitate a specific set of methods to estimate the functional 

curves from the observed data points, the PACE algorithm.  The statistical theory and 

computing algorithms for sparse data have only been developed in recent years 18-20.   

We assume that a smooth (twice-differentiable)  process generates body mass index (BMI) 

trajectories across age 21. The individual –unobserved-- BMI curves are considered random 

(i.i.d.) realizations of that process and the observed BMI data points are considered snapshots 

of those individual curves at the times of measurement. The goal of FDA is to estimate the 

individual BMI curves from the observed BMI data points.  These reconstructed curves are the 

unit of FDA analysis.   

Functional principal component analysis (FPCA) via PACE.  FPCA is the core dimension-

reduction tool in FDA 22.  Analogous to multivariate principal components analysis,  FPCA  

decomposes the covariance surface into eigenvalues and  eigenfunctions, which are then used 

in further analyses 23. The mean function (mean BMI function by age in our case) is estimated 

with a local linear scatterplot smoother fitted to the aggregated BMI data plotted against age.  

The mean function is combined with the raw data to calculate raw covariances of pairwise time 

points of BMI measurements for each individual.  A final smooth covariance surface is estimated 

by fitting a 2-dimensional smoother over the combination of the raw covariances for all 

individuals.  Using the estimated mean function and covariance surface, principal component 

scores can be obtained for each individual for use in further analysis.  A small number of first 

eigenfunctions are chosen such that a high percentage of the variation, as given by the 
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eigenvalues, is explained. The FPC scores for each individual then can be obtained using the 

mean function and the eigenfunctions.  

The FPCA for sparse longitudinal data involves an additional conditional expectation and uses 

the Principal Analysis by Conditional Expectation (PACE) algorithm.  The Principal Analysis by 

Conditional Expectation (PACE) approach to FPCA was recently developed as a non-

parametric approach to predicting the individual FPC scores from sparse longitudinal data 20, 24.  

Due to the small number of observations per individual function, the FPC scores cannot be 

estimated effectively using the data alone but require an additional model step that combines 

the available individual data points with data from the whole sample 20.  In the PACE approach, 

we assume that the FPC scores and the errors are jointly normal and thus, instead of the 

scores, the conditional expectation of the scores is  estimated based on the estimated mean 

and eigenfunctions 25.   The predicted FPC scores can be used to predict complete individual 

functions or can be used in other analyses.  

Hierarchical clustering for sparse functional data.  Cluster analysis is an exploratory approach 

for sorting objects into meaningful groups.  In general, the clustering procedure comprises two 

steps; first, a dissimilarity matrix is calculated, then clustering algorithms are used to group 

various features of the functional data.  Dissimilarity among functions is defined using the L2 

distance, analogous to Euclidian distance for multivariate data 26. The resulting dissimilarity 

matrix consists of distances between BMI trajectories.  To aid visualization and interpretation, 

multidimensional scaling is applied to the dissimilarity matrix to project all individual trajectories 

onto  a 2-dimensional space. These locations are then entered into a hierarchical clustering 

algorithm.  

For this analysis, we used Ward’s linkage 27 and a squared Euclidean metric to obtain a solution 

with the optimal number of clusters.  Matlab hierarchical clustering supports an agglomerative 

method (bottom - up) in which smaller clusters are joined to create larger clusters as the 
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algorithm proceeds. The process is usually visualized by a dendrogram, a branching diagram 

where clusters at one level are grouped into larger clusters at a higher level, to represent the 

dissimilarity across clusters or arrangement of clusters produced by hierarchical clustering.   

The bottom row represents collapsed data (if we had fewer than 30 observations, the original 

data would be shown); the other nodes represent the corresponding clusters.  The length of the 

vertical lines represents the dissimilarity  (distance) of the cluster from other clusters.  The 

horizontal distance is irrelevant.  For a clustering analysis of dense functional data, see 

Huzurbazar and Humphrey 28. Documentation for the hierarchical clustering in Matlab is 

available online 29.  

Finally, we compare the health correlates across the clusters.  All analyses are stratified by 

gender.  Stata 11.2 30 was used for descriptives and for comparing the characteristics of the 

clusters; PACE 2.16 package in Matlab 24 was used for functional data analysis.   

RESULTS 

Table 1 summarizes sample characteristics.  There are slightly more women (52%) than men; 

the mean year of birth for both groups is in 1936 – that is, they were 56 years old, on average, 

at the baseline interview wave.  Men and women started with mean BMI of 27 and on average 

gained about one BMI point during the 18 years of followup. 

Figure 1 illustrates the steps of the FPCA.  The FPCA via PACE first estimated the mean BMI 

trajectories, the covariance surface, eigenfunctions, and the individuals’ estimated principal 

component scores.  The top row plots of Figure 1 show the estimated mean BMI curve for men 

and women in the sample,  both of which increase slightly from age 50 to about 70-75 and then 

begin to decrease.  The middle row of Figure 1 shows the estimated correlation surface, and the 

bottom row a scree plot from the FPCA.  The scree plot displays the cumulative proportion of 

total variance in the data due to each added functional principal component.  For both genders, 

the first two principal components explain approximately 97 percent of the total variance in BMI.    
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Figure 2 shows the dendrograms for male and female BMI functions,  The plots summarize the 

formation of the clusters by displaying the vertical distances between the hierarchically-formed 

clusters.  We can identify the number of clusters associated with a particularly large vertical 

distance values of the cluster formation.  The visual inspection indicated the 3-cluster solution 

as the optimal choice for both genders.  Once individuals are clustered, we can obtain the mean 

BMI curves for each cluster.  

Figure 3 shows the mean BMI curves in each cluster for men and women.  The results for both 

genders are substantively similar.  One group remains in the normal BMI range (high-normal for 

men) with a relatively stable levels, especially for me: a slight increase of less than 2 BMI points 

from age 50 until about age 75 when the mean declines somewhat; we call this group the 

normal-stable cluster.  The second group starts in the overweight range and increases to the 

obese range; we call this group the overweight-gaining cluster.   For women, this cluster starts 

with the mean BMI of about 29 and increases to about 31 by age 70 when the BMI begins to 

decline slightly; the men’s cluster starts with the mean BMI of about 27 and increases to almost 

32.   The third group is characterized by BMI curves that start in the overweight/obese range 

and decline fairly steeply with age; we refer to this group as the overweight-losing cluster.  For 

men, the decline is about 5 BMI points from about 31 to 27; the average BMI for women in this 

cluster declines about 7 BMI points from 28 to 21.    

Table 2 compares basic characteristics of these three groups for men and women.  The 

overweight-gaining and overweight-losing clusters are compared against the normal-stable 

group using regression-based Wald tests.  Unsurprisingly, the mean BMI levels at the start 

(1992) and end of followup (2010), as well as BMI change over time, were significantly different 

in both overweight non-stable groups, compared to the reference cluster.   

Baseline health as measured by self-rated health and number of conditions was significantly 

worse for both overweight groups in both genders (P <.001 in seven out of the 8 comparisons, 
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the exception was SRH in the overweight-gaining group for men, where P =.07).  The 

differences were quite pronounced:  for instance, the normal stable groups averaged 0.8 chronic 

conditions in both genders in 1992 while the overweight-losing cluster started with 1.3 and 1.4 

conditions for men and women, respectively.  In terms of survival during the study duration, the 

overweight gaining cluster was either statistically equivalent (for women, P =.66) to the normal 

stable cluster or even experienced a lower proportion of deaths (for men, P =.02).  In contrast, 

the overweight losing group experienced a significantly higher proportion of loss to death.  

Among men, 37 percent of the overweight losing cluster died through 2010, compared to 28 

percent in the normal stable cluster (P <.001).  The difference was particularly large for women: 

the overweight losing cluster lost over 36 percent of the sample to death, compared to just 17 

percent in the normal stable group (P <.001).   

DISCUSSION 

The aim of this study was to determine typical body mass index (BMI) trajectories among older 

adults and to assess the health correlates of the different trajectory groups.  The analysis used 

a novel nonparametric approach: hierarchical clustering of functional curves estimated via the 

PACE algorithm for sparse longitudinal data.  To the best of our knowledge, this is the first 

applied study using this approach in any field. 

We found that BMI curves among older adults fall into three groups: one cluster is mostly in the 

normal-weight range and remains fairly stable or increases moderately across age; a second 

cluster is mostly in the overweight range and characterized by gradual weight gain; a third 

cluster is also mostly in the overweight range but is characterized by steady weight loss.  

Interestingly, both the optimal number of clusters and the mean BMI trajectories in each cluster 

were similar for men and women, which suggests common underlying biological determinants 

for these three different BMI patterns.   
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The three BMI trajectory clusters differed substantially in terms of initial health and survival 

through the end of the study period.  The overweight gaining cluster started with significantly 

worse health than the normal stable cluster – despite their poorer health, individuals in this 

cluster experienced similar (among women) or even slightly lower (among men) risks of dying 

over time.  This discrepancy between health and mortality results might be related to the obesity 

paradox 3 whereby overweight (and sometimes even obese older individuals) have comparable 

or lower mortality than the normative group with BMIs between 18.5 and 25,One possible 

explanation posits that continued weight gain signifies substantial physiological reserve that 

allow older adults to function with their health problems over the long-term 31-32.   

Individuals in the overweight losing cluster started, on average, with significantly worse health 

than those in the normal stable group; they also experienced significantly greater mortality: 

about a third higher among men and over twice as high among women.  This findings supports 

well-known research on the high mortality associated with weight loss among older adults 33-35. 

However, our approach indicates that the typical weight loss patterns among older adults occurs 

at relatively high BMI levels, from overweight/obese levels toward the normal weights.  This is 

an important factor because weight loss from overweight levels could be viewed as a positive 

changed from the perspective of clinicians or the individuals themselves. This paradox, 

therefore, needs to be further examined with additional evidence. 

Our results also corroborate findings from one of the recent studies that modeled heterogeneity 

in BMI trajectories among older adults and associated health and/or mortality 12.  That study 

used a joint growth mixture-survival (proportional hazard) model.  Despite the different 

methodologies used, with fundamentally different assumptions (in particular, the FDA approach 

makes no parametric assumptions about the age effects while the growth mixture analysis was 

parametric –linear-- with respect to time), the findings of these two studies were substantively 

similar, which strengthens the validity of both sets of results. However, we argue that the FDA 
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approach should be used in future analysis, as it is more responsive to data patterns and less 

restrictive in its assumptions. 

Several caveats should be noted.  First, we did not distinguish between voluntary and 

involuntary weight loss (we did not have this data).  However, given the modest (at best) 

success rates of voluntary weight loss programs in the U.S. 36-37, we can safely assume the bulk 

of the weight loss observed in our data was involuntary.  Second, all BMI information was self-

reported, potentially biasing the results.  However, while we can expect that respondents tend to 

underreport their body weight 38-39, the underreporting tendencies are likely to remain relatively 

unchanged over the multiple interviews.  Thus the shape of the described trajectories is likely 

unbiased, but their overall levels may be biased slightly downward.    

There is growing interest in examining heterogeneity in BMI trajectories, that is, identifying 

distinct trajectory types.  The growth mixture methodology used in the available studies, 

however, depends heavily on assumptions and modeling decisions, sometimes yielding 

contradictory results.  We introduced functional data approach as a compelling alternative 

methodology to identify such BMI trajectory types. The approach can be used for a wide variety 

of substantive issues, from physical and mental development in early life to health changes 

across the lifecourse.  The nonparametric nature of the FDA allows the detection of subtle but 

possibly important features of the data, such as acceleration or deceleration of changes at 

specific ages or time points.  For instance, in supplementary analyses (not shown), we found a 

systematic acceleration of weight loss starting at least several years prior to death, a pattern 

that’s difficult to capture in parametric models.  New tools and applications for FDA for sparse 

longitudinal data are being developed.  We urge researchers to explore FDA to examine diverse 

substantive questions because its flexibility and assumptions that differ from most standard 

approaches can reveal new and important findings.   
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Table 1.  Characteristics of the HRS cohort 1992-2010, by sex  (N=9,893). 

 Men Women 

Proportion of sample at baseline 48.2% 51.8% 

Mean year of birth (s.d.) 1936.1 (3.1) 1936.2 (3.1) 

Mean body mass index (BMI), in kg/m2   

    In 1992 27.1 (4.0) 26.6 (4.9) 

    In 2010 28.0 (4.6) 27.5 (5.3) 

Self-rated health at baseline   

    Excellent 23.1% 21.3% 

    Very good 27.7% 28.6% 

    Good 28.4% 27.1% 

    Fair 12.8% 15.4% 

    Poor 8.0% 7.6% 

Number of conditions at baseline (s.d.) 1.0 (1.1) 1.1 (1.1) 

Mortality followup   

    Proportion died by 2010 (wave 10) 29.2% 20.5% 

    Proportion died between waves 9 & 10 7.2% 5.8% 

N 4,764 5,129 
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Table 2.  Three-cluster solution for BMI curves: sample means and group comparisons  

    Stable normal Overweight gaining Overweight losing 

Men    

    % in each class 39.1%  32.1%  28.8%  

    BMI at 1992 baseline 24.1 Ref. 27.4 P <.001 30.7 P <.001 

    BMI at 2010 interview 24.6 Ref. 31.5 P <.001 29.1 P <.001 

    BMI change 1992 to 2010 0.2 Ref. 3.4 P <.001 -1.5 P <.001 

    Year of birth 1935.8 Ref. 1936.5 P <.001 1936.3 P <.001 

    Self-rated health 2.4 Ref. 2.5 P =.075 2.8 P <.001 

    Number of conditions 0.8 Ref. 1.0 P <.001 1.25 P <.001 

    Proportion died by 2010 27.7% Ref. 24.2% P =.023 36.6% P <.001 

Women       

    % in each class 33.9%  50.9%  15.1%  

    BMI at 1992 baseline 22.2 Ref. 29.3 P <.001 27.5 P <.001 

    BMI at 2010 interview 23.5 Ref. 31.0 P <.001 22.7 P <.001 

    BMI change 1992 to 2010 1.1 Ref. 2.1 P <.001 -4.6 P =.001 

    Year of birth 1936.1 Ref. 1936.3 P =.236 1936.3 P =.223 

    Self-rated health 2.3 Ref. 2.7 P <.001 2.9 P <.001 

    Number of conditions 0.8 Ref. 1.2 P <.001 1.4 P <.001 

    Proportion died by 2010 17.4% Ref. 17.9% P =.664 36.1% P <.001 

Note: The first column for each group summarizes each characteristic within the group.  The 

second column shows the p-value comparing the second and third groups with the first one with 

respect to each characteristic.   The results are from regression models (linear models, ordered 

logistic models for SRH and logistic models for proportion who died) of a characteristic on the 

categorical cluster variable, with the “stable normal” group as the reference category.   

The summarized mean BMI levels in each cluster listed in this table are not identical to the 

estimated mean cluster BMI trajectories. 
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Figure 1. Mean BMI curves, fitted correlation surfaces, and scree plots.  

 

 

  
N 

 

Note: the left and right panel show results for men and women, respectively.  
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Figure 2. Dendrograms for male and female clustering, respectively.  
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Figure 3. The mean BMI curves of each clusters for men and women 

 

Note: NS = normal stable cluster; OG = overweight gaining cluster; OL = overweight-losing 
cluster. 

 

  

 

 


