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Abstract

We transform data classified by chronological age into data classified by remaining years of life (thana-
tological age). A model for population renewal and the corresponding projection matrix are presented
for populations structured by thanatological age. Period results are derived using all available data from
the HMD and HFD. We compare the intrinsic growth rate, r, as derived from the classic Lotka equation
versus that derived on the basis of thanatological age. We also compare some transient indicators be-
tween the two models. Empirical results suggest that r from the thanatological model tends to be less
erratic than Lotka’s r, and the trajectory to stability tends to be faster with less oscillation.

*This is a work in progress. All findings are preliminary at this time, so please don’t cite without
permission of the author.

All demographic forces vary over age in known and regular ways. Information on such forces, along with
the size and age structure of a population allows the demographer to make predictions about the future
size and structure of a population. In this paper, we explore some formal demographic consequences of a
particular redefinition of age. Instead of counting age as the time passed between birth and the present (or
some other moment), consider age as the amount of time left from the present until death. Individuals in
this case move in the same direction along imaginary life lines, but the reference point for age is now at the
end of the life line instead of at the beginning. Of course, such information cannot be requested of survey
respondents or register data, because one’s time at death is typically unknown. Instead we approximate
this perspective using a similar strategy to that used by Miller (2001) or Lee and Miller (2002), which uses
lifetables and aggregated population counts.

Temporal perspectives and rescalings are abundant in demography already, but questions are left unan-
swered. Likely some demographic phenomena are best described as a function of time since birth, and others
of time until death, while still others can be a function of both to some degree. This author supposes that
fertility and reproduction can be a function of both age perspectives, and that the question of how to parti-
tion forces and events over time is a difficult one. Thanatological reproduction sits at the opposite extreme of
chronological reproduction, the Lotka-Euler renewal model. By specifying a model of thanatological renewal,
we both expand the toolbox available to approach complex temporal structure and we provide a set of broad
findings to help understand the implications of temporal structure.
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From chronological to thanatological age

Our point of departure is a little formula that gives the probability of dying at some age n years in the future,
given survival to some earlier age, a. For age 0 this is simply the d(a) column of the lifetable, standardized
to sum to 1. For higher ages, we simply condition on survival:

f(n|a) = µ(a+ n)
l(a+ n)

l(a)
(1)

A convenient discretization of (1) is to simply work with the dx column of the lifetable

dx+n,x =
dx+n∑ω
i=x di

(2)

where ω is the highest age.1 One produces in this way a probability density function over future death
times for each age, and the dx+n,x- weighted average of n for a given age x will simply produce the familiar

remaining life expectancy column of the lifetable, ex. Since 1 =
∑ω−x

n=0 dx+n,x for each x, we can use this
to decompose age-classified demographic data. For example, we can break down a population pyramid into
remaining years categories, like in Figure 1a, which shows this exercise for 2010 US data. The fun starts
when we proceed to regroup the data by n instead of collapsing back to x. Now instead of remaining lifetime
heterogeneity within each age group we have age heterogeneity within each discrete remaining years of life.
Figure 1b shows this recomposition for the same 2010 US data.

If Px is an age-classified discrete population count, we can derive Py, a remaining-years-classified popu-
lation count, as follows:

Py =

ω∑
x=0

Px
dx+y + dx+y+1

lx + lx+1
(3)

and of course

P =
∑

Py =
∑

Pa (4)

We refer to (3) as the thanatological age transformation2, and this complements the notion of chrono-
logical age. It bears repeating that thanatological age is merely probabilistic, since it refers to the future
according to particular assumptions about the survival curve. As such, Figure 1b is projective in nature, a
forward-looking glance at a population given the age-structure and lifetable of a particular moment, whereas
Figure 1a is reflective in nature, since a population’s age-structure is mostly the fruit of past fertility, but also
migration and to a lesser degree attrition. In a different paper we explore population structure by remaining
years of life for its own sake. Note that any age-classified count can be reclassified in this way, as long as
you have a lifetable that plausibly represents the population whose data you wish to reclassify. This means
we can derive thanatological fertility rates, Fy, by applying (3) to age-classified birth counts, Bx, to get By

and again to exposure-to-risk, Ex (here we take exposures from all ages), to get Ey and then dividing:

1In later formulas we just use lx in the denominator to reduce clutter, but the above sum over dx will eliminate rounding
error in case one is working from a published life table.

2I have on good authority that Ken Wachter coined the term thanatological age.
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Figure 1: 2010 US population

(a) Chronological age-structure decomposed by
thanatological age.
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(b) Thanatological age-structure decomposed by
chronological age.
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*Population and mortality data from the HMD.
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Fy =
By

Ey
(5)

We are interested to use thanatological fertility rates, Fy in models of population renewal, rather than
to explicitly study the nature of these rates. Nonetheless it is best not to throw such rates into a model
blindly, so we offer a schematic overview of some of their characteristics. Figure 2b represents the full variety
in female thanatological period fertility rates that can be found for all years of data that overlap in the
HFD and HMD.3 Figure 2a gives ASFR for the same populations and years as a more familiar reference,
but note that both scales are different! With no indication of particular populations or time series, one
already concludes that thanatological fertility rates have a characteristic shape and are not random, erratic
or informationless: there is a pattern to fertility rates by remaining years of life, and it varies over time and
between populations within some range of normality. Thanatological fertility rates have a wider distribution
than do chronological rates. Note that this spaghetti plot includes both fertility booms and busts, as well
as some mortality crises (1918, WWII). Some patterns to note, but which we do not separate graphically
here, are that the left tail (a gauge of how orphan-prone a population is) has tended to fall over time. All
populations have shown a rightward shift in both the mean and modal female thanatological age at birth
(TAB) over time (that’s unambiguously a good thing). Several populations now show modal TABs of over
60 years. Thanatological total fertility rates track standard PTFR rather closely, but tend to be somewhat
higher.

In general, such fertility rates will not be palatable for purposes of projection, unless the demographer
believes that their empirical regularity is somehow stronger than typical ASFR — an argument we do not
make. There may be alternative ways of defining thanatological fertility rates, for instance after stability,
which would make this model component more conformable with the Lotka renewal model. First let us
define the basic model.

The thanatological renewal model

For the population model that follows, we are most interested in using the kind of fertility rates shown in
Figure 2b, and we refer to a unisex population. Assuming constant vital rates, the births for the present
year are given by:

B(t) =

∫ ∞
0

P (y, t)F (y) dy =

∫ ∞
0

P (a, t)F (a) da (6)

where P (a), P (y) are population counts and F (y), F (a) are exact specific fertility probabilities (rates), and
d(a) is the continuous lifetable death distribution with radix of 1, so d(a)/l(0). The thanatological integral
can be broken down back in terms of chronological age.

=

∫ ∞
y=0

∫ ∞
a=0

F (y)
P (a, t)d(a+ y)

l(a)
da dy (7)

3There are as of this writing 1834 population-years of overlap between the HMD and HFD, including a wide variety of
fertility and mortality combinations.
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Figure 2: Chronological and thantological fertility rates, all 1600 country-year combinations present in both
the HFD and HMD.* Note different x and y scales.

(a) Chronological period fertility rates. (b) Thanatological period fertility rates.

*AUT, 1951 − 2010; BGR, 1947 − 2009; BLR, 1964 − 2009; CAN, 1921 − 2007; CHE, 1932 − 2011; CZE, 1950 − 2011; DEUTE, 1956 − 2010; DEUTNP,

1990 − 2010; DEUTW, 1956 − 2010; ESP, 1922 − 2006; EST, 1959 − 2010; FIN, 1939 − 2009; FRATNP, 1946 − 2010; GBR NIR, 1974 − 2009; GBR NP,

1974−2009; GBR SCO, 1945−2009; GBRTENW, 1938−2009; HUN, 1950−2009; IRL, 1955−2009; JPN, 1947−2009; LTU, 1959−2010; NLD, 1950−2009;

NOR, 1967 − 2009; PRT, 1940 − 2009; RUS, 1959 − 2010; SVK, 1950 − 2009; SVN, 1983 − 2009; SWE, 1891 − 2010; TWN, 1976 − 2010; UKR, 1959 − 2006;

USA, 1933 − 2010

We can relate the present population to past births with P (a, t) = B(t− a)l(a).

=

∫ ∞
y=0

∫ ∞
a=0

F (y)B(t− a)d(a+ y) da dy (8)

And eventually– a bit quicker than is the case for chronological age– strong ergodicity will assert itself, and
B(t) will be related to B(t − a) according to a constant factor era, where r is the familiar intrinsic rate of
growth.

=

∫ ∞
y=0

∫ ∞
a=0

F (y)B(t)e−rad(a+ y) da dy (9)

Divide out B(t) to get back a familiar-looking renewal equation.

1 =

∫ ∞
y=0

∫ ∞
a=0

F (y)d(a+ y)e−ra da dy (10)
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Now compare this to Lotka’s chronological formulation

1 =

∫ ∞
a=0

F (a)l(a)e−ra da (11)

and note that these are really quite similar, since
∫∞
y=0

d(a + y) da = l(a). For intuition, notice that l(a) is

here split up into pieces of d(a), and imagine a 2D surface of these, where one axis is chronological age and
the other axis is thanatological age. For the chronological case (11), we multiply chronological age-specific
fertility rates over one margin, and for the thanatological case over the other margin. There is a strong
parallel here with the case of two-sex age-specific fertility rates. As in the case of divergence between male
and female single-sex models, there will always be divergence between single-sex models under chronological
versus thanatological age. Even though the modeled population stocks are in a way commensurable, the
rates used, F (a) versus F (y) are calculated on the basis of differently distributed denominators E(a) versus
E(y).

There are gaps in the above line of development, since the jump from (8) to (9) (strong ergodicity) is
unproven, although it is rather intuitive, given the much greater density of connections within the model;
persons from nearly any thanatologcal age can produce offspring that can have any other thanatological
age. In this sense, the smoothing mechanism must be much stronger than that for chronoloical age, at least
in most cases. A further conjecture is that the jump will also hold for the case of weak ergodicity. The
mechanisms at play unfold in the same way as those so intuitively described by Arthur (1982), and said
proof may apply here without further modification. A proof of the uniqueness of the solution to (10) is given
in Appendix A.

Once one finds r from (10), other familiar stable population parameters can be calculated. For instance,
we may calculate the mean thanatological generation time, T y, as:

T y =

∫∞
y=0

∫∞
a=y

ye−rad(a)F (y) da dy∫∞
y=0

∫∞
a=y

e−rad(a)F (y) da dy
(12)

The net reproduction rate, R0 is related by, e.g.,

R0 = erT
y

(13)

The birth rate, b, is given by

b =
1∫∞

y=0

∫∞
a=y

e−rad(a) da dy
(14)

The stable age structure, c, where cy is the proportion of the stable population with remaining years to live
y, is given by

c(y) = b

∫ ∞
a=y

e−rad(a) da (15)

Other stable population quantities may be estimated by similarly translating the various common definitions
(e.g., in the glossary of Coale (1972)) to the present perspective. We will focus on the main model rather
than on these.

The thanatological renewal model is coherent, but the idea may seem strange. What should one imagine
under the model of thanatological population renewal? A useful mnemonic bases itself on Figures 1a and
1b. In the age-structured model, new generations appear at the bottom of the pyramid, and move up one
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rung per year. All ages are subject to decrement. In the thanatological leaf, each birth cohort increments to
the population over the whole range of thanatological age according to d(a), as seen in (10). Birth cohorts
become the layers seen in Figure 1b. Each horizontal step is a death cohort, and these move one step down
the pyramid each year without any decrement (indeed incrementing) until reaching the very bottom. In
short, the locations of increment and decrement, and the direction of movement are all switched.

The thanatological projection matrix

These descriptions can be made more explicit by hashing out the projection matrix that corresponds to
the thanatological renewal model. As with the age-structured Leslie matrix, the thanatological projection
matrix, Y, is square and of dimension n × n, where n is the number of remaining-years classifications into
which the population is divided. The matrix contains elements for survival and elements for fertility. Unlike
Leslie matrices, Y is not sparse, but is populated primarily with non-zero entries.

Of interest is that mortality occurs in only the population class with zero remaining years of life. Thana-
tological age 1 in year t moves to 0 in year t + 1. Thus, instead of in the subdiagonal, we place survival in
the superdiagonal. All survival values are 1, since there is no decrement, and the upper-left corner of this
superdiagonal contains a 0, for full decrement. We illustrate using a 6×6 matrix. The survival component
of Y is organized as in Matrix 0.1.

Matrix 0.1: Survival component of unisex thanatological projection matrix, Y



ey 0t 1t 2t 3t 4t 5t

0t+1 0 1 0 0 0 0
1t+1 0 0 1 0 0 0
2t+1 0 0 0 1 0 0
3t+1 0 0 0 0 1 0
4t+1 0 0 0 0 0 1
5t+1 0 0 0 0 0 0


Fertility inputs to the matrix are derived from single-sex thanatological fertility and the lifetable da

distribution, where a indexes age, but is equal to y, remaining years of life for persons aged 0. Fertility
in a thanatologically structured population occurs in all but the highest remaining years classes. For our
example, say that fertility is observed in classes 0-4, while the final class has no fertility, where Fy indicates
the fertility probability for class y in the year t entering population (in the matrix columns). Each Fy is then
distributed according to da with no further translation, since the da lifetable column already refers to age 0.
Thus, the fertility entry in row m and column n of Y will be Fn · dm. We assume that those dying over the
course of year t (the first column) are exposed to fertility for half of the year,4 and so discount the fertility
entry accordingly. Further, infant mortality, Fy · d0, located in the first row, must also be discounted, since
part of the mortality will occur in the same year t and the rest in year t+ 1. The first row of fertility must
be further discounted by a factor, λ, in order to account for the fact that infant mortality is higher in the
lower Lexis triangle than in the upper: of those infants who die in the first year of life, a proportion equal to

4One might be tempted to not allow for fertility at all for females dying in year t, but recall that fertility is measured in the
moment of birth, and not conception.
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λ do not make it to December 31st of the calendar year in which they were born.5 The fertility component
of Y is then composed as in Matrix 0.2.

Matrix 0.2: Fertility component of unisex thanatological projection matrix, Y



ey 0t 1t 2t 3t 4t 5t

0t+1 (1− λ)F0d0

2 (1− λ)F1d0 (1− λ)F2d0 (1− λ)F3d0 (1− λ)F4d0 0

1t+1
F0d1

2 F1d1 F2d1 F3d1 F4d1 0

2t+1
F0d2

2 F1d2 F2d2 F3d2 F4d2 0

3t+1
F0d3

2 F1d3 F2d3 F3d3 F4d3 0

4t+1
F0d4

2 F1d4 F2d4 F3d4 F4d4 0

5t+1
F0d5

2 F1d5 F2d5 F3d5 F4d5 0


The survival and fertility components of Y add together elementwise, thus the full 6×6 matrix is composed

as in Matrix 0.3.

Matrix 0.3: A full unisex thanatological projection matrix, Y

Y =



ey 0t 1t 2t 3t 4t 5t

0t+1 (1− λ)F0d0

2 (1− λ)F1d0 + 1 (1− λ)F2d0 (1− λ)F3d0 (1− λ)F4d0 0

1t+1
F0d1

2 F1d1 F2d1 + 1 F3d1 F4d1 0

2t+1
F0d2

2 F1d2 F2d2 F3d2 + 1 F4d2 0

3t+1
F0d3

2 F1d3 F2d3 F3d3 F4d3 + 1 0

4t+1
F0d4

2 F1d4 F2d4 F3d4 F4d4 1

5t+1
F0d5

2 F1d5 F2d5 F3d5 F4d5 0


Thanatological age-classes will ideally terminate at the highest value permitted by data. For the data

used here, there are 111 total age classes, which translate to 111 total remaining-years classes (0-110+). In
practice Y becomes a 111×111 matrix, with most entries non-zero. Construction may appear tedious for this
reason. However, note that the bulk of fertility entries can be derived as the outer (tensor) product da⊗ fy,
leaving only the first row and first column mortality discounting followed by the addition of the survival
superdiagonal. In most statistical programming languages constructing Y entails only a couple more lines
of code than constructing a Leslie matrix.

5λ can be derived directly from death counts data classified by Lexis triangles. In the US, λ has behaved similarly for males
and females, falling steadily from around 0.9 in 1969 to 0.86 around 1990, since which time it has steadily risen to around 0.87.
That is to say, λ has varied, but not drastically. These numbers are just meant to give a feel for the ranges that λ can be
expected to receive. If the demographer does not have information to derive λ directly, ad hoc or semidirect methods may be
used to assign a reasonable proportion.
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As with Leslie matrices, the above projection matrix may be manipulated using standard matrix tech-
niques. Where p is our population vector, we project by multiplying Y from the left: p(t + 1) = Yp(t).
From Y, we can extract such information as the intrinsic growth rate, r (natural log of the largest real
eigenvalue), the stable thanatological age-structure (the real part of the eigenvector that corresponds to the
largest real eigenvalue), or the pace of convergence to stability (the ratio of the 1st to the 2nd eigenvalues).
6

Some empirical findings

The renewal equation and the discrete projection matrix can be put to work with data. At this time we
are only ready to report some early results, and we do not yet have explanations some of the patterns that
we report. Of our 1834 population-years, we optimize r from both (10) and (11)7. In this sample, both
versions of r are only plausibly equal in a single instance. Usually thantological r is greater than Lotka’s
r (1373 cases). When Lotka’s r is positive (693 cases), thanatological r is greater just over of 50% of the
time (356), but when Lotka’s r is negative, thanatological r is the greater of the two around 90% of the
time (1017 cases). These two approximations of r are of opposite sign 138 times. We provide a comparison
of the r distributions in Figure 3. Mean locations for each distribution are indicated with vertical dashed
lines; thano. -0.0010; chrono. -0.0027. The distribution of thanatological r is more compact than, with the
ratio of variances (thano./chrono.) of about 0.75. Usually the two theoretical values of r move in the same
direction, but thanatological r is over time the less erratic of the two, and it usually paints a less dire picture
when both are negative.

From the projection matrix, the ratio of the largest to the second largest eigenvalue, the damping ratio, is
an indicator of the springiness of the stable population structure, cy or ca, with respect to disturbances from
the stable state as determined by vital rate distributions. A higher damping ratio means that the population
structure oscillates back to its stable state faster, i.e., that oscillations decrease in size more rapidly. The
thanatological damping ratio was greater than the Leslie damping ratio for all 1834 population-years included
in our empirical analysis. Leslie damping ratios ranged from 1.01258 to 1.0518, while thanatological damping
ratios ranged from 1.0455 to 1.0868.

* this is a work in progress, and by the time the EPC comes around I’ll have shifted the focus away on
comparing stable results estimated from data (the last couple figures), and more toward the reversibility of
chronological and thanatological stable age structures, as well as a comparative eigen-analysis of the Leslie
and thanatological projection matrices.

A Unique solution for thanatological r

The solution for the intrinsic growth rate, r, is unique for the case of the thanatological renewal model, (10),
and can be proven so in essentially the same fashion as those in existence for the Lotka-Euler model, (11).

6See Caswell (2001, p.86-87).
7It is possible to optimize r using a variety of approximations, or by using a generic optimizer. We have used the method pro-

posed by Coale (1957) for Lotka’s r and a modified version of the same for the thanatological r. Details and / or implementation
code available on request.
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Figure 3: Distribution of r, chronological (Lotka) and thanatological*.
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* Data from HMD and HFD. Countries and years listed in Figure 2.

This little proof follows that given in pressat1972demographic. Define a convenience function, I(r), for the
integrand of (10) for a given r and fixed F (y) and d(a):

I(r) =

∫ ∞
y=0

∫ ∞
a=0

F (y)d(a+ y)e−ra da dy (16)

Since the death distribution function, d(a), and fertility function, F (y), are continuous and non-negative,
limr→+∞ I(r) = 0 and limr→−∞ I(r) =∞. If r2 > r1, then I(r1) > I(r2). I() is therefore a continuous and
monotonically decreasing function of r with boundaries that include the value 1 of (10), and necessarily only
obtain this value once.
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