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1. Introduction 

From the review of studies on longevity emerges that there is not a common agreement on 

age-threshold for the identification of long-lived populations and individuals. More 

frequently researchers adopt their strategies, perspective and longevity thresholds 

according to the available data. However, among the variegate survival cut-off used it is 

possible to classify longevity thresholds into two large groups, namely “fixed" and 

"relative" threshold. 

The fixed threshold are identified in correspondence of specific ages, for example at 50, 

60, 70, 80 years and the choice is entirely arbitrary and heavily depends on the specific 

research question. For example, researchers interested in investigating the effect of genetic 

endowment on survival at advanced ages are generally oriented in the study of individuals 

50 years and over (Christensen et al. 2006). Therefore the use of a survival threshold is 

instrumental to the identification of the population understudy.  

There are also numerous studies that chose a specific longevity threshold to identify inside 

a specific population subgroups of individuals, that accordingly to the selected cutoff age 

are classified as long-living or not. 

The applications of “relative” thresholds are the same of the fixed one just discussed, but 

what changes is the procedure according to which the cutoff age is chosen. In this case the 

identification of the longevity threshold occurs according to the distribution of deaths and 

its cumulative percentages - for example, the 8th or the 9th decile (Blackburn et al. 2004). 

Both longevity thresholds prove to have strengths and weaknesses and in general, 

researchers are more oriented to adopted the cutoff age used in similar studies in order to 

be able to compare results. However, among the possible points of reflection there are two 

aspects that deserve special attention: i) survival experience of a population along the 

entire life cycle can greatly differ from another, despite for example reaching similar level 

of survival at older ages; ii) given the heterogeneous composition of the population, when 

analyzing differential mortality it could be useful to think in terms of population selection, 

devoting attention not exclusively to the robust component, the long-living ones, but also 

to the frail individuals, who exit from the population at earlier stages. 

The questions that arise are numerous: why some people died earlier than others? Which 

variables are involved in the selection process? And the latter have a constant effect on 

individuals’ survival or their influence varies at different stages of life? And in other 

words, do the estimated effect of the selected variables vary accordingly to the longevity 

threshold chosen for investigation?  

In the attempt to answer these questions, the present paper proposes the use of Quantile 

Regression Models (QRM) as a useful method for the identification of longevity threshold 

as they allow to examine the evolution of survival experience of the population under 

study at different ages and in the meantime to check the effect of covariates. The use of 

QRM is applied in the present contribution to the study of Villagrande Strisaili (Italy) 

population. 



2. Data and methods 

The database used comes from the Villagrande Longevity Database (VILD), which 

includes all individuals born in Villagrande Strisaili (Italy) from 1866 to 1915. For each 

individual the exact date at death or the proof that he/she was still alive at the date of 

investigation have been traced. The data was gathered from civil registers (which record 

all births, marriages, and deaths), parish registers and the population registers (anagrafe). 

For further details on VILD data see Salaris 2010. 

Survival data is here analyzed by means of Quantile Regression Models (QRM). These 

models could be particularly useful in the study of longevity as they enable to estimate 

quantiles of age at death as a function of a set of predictors. In this way, according 

population characteristic and/or structure, we can obtain more precise estimates of 

parameters. In this work we estimate some important percentiles: 10-th, 20th, 25-th, 50-th, 

75-th, 80-th and 90-th to study both usually most import points of deaths distribution and 

its tails. 

QRM are robust models, less sensitive to the presence of outliers and they do not require 

particular assumptions about the distribution of survival times (Koenker and Bassett 

1978). The simultaneous estimation of a set of quantiles using QRM  allows to study the 

effect of predictors for different levels of longevity and to estimate the variance-

covariance matrix simultaneously for the different quantiles to obtain optimal confidence 

intervals of estimated parameters. QRM could also be used to predict every quantile of age 

of death as a function of a set of values of significance predictors. 

QRM were used in different research areas, particularly in ecology and biology (Koenker 

and Geling 2001; Knight and Ackerly 2002), and most recently in the analysis of the 

importance of inequality as predictor of mortality rates (Yuang et al., 2012). Algebraically, 

we have that given a vector   of covariates and   [   ]  the equation of a QRM that link 

linaearly   (   ) to   is 

  (   )   
  ( ) 

where   (   ) is the conditional quantile to covariates and  ( ) is the vector of unknown 

parameter of the model, that represents the effect of covariates on the   quantile of 

dependent variable and changes according to different quantiles. In presence of incomplete 

or truncated data as in survival times analysis, there are two approaches: the first proposed 

by Portnoy (2003) to estimate conditional quantile functions generalizing the Kaplan-

Meier method; the second proposed by Peng and Huang (2008) based on Nelson-Aalen 

estimator of the cumulative hazard function. Indicating with T the survival time, 

respectively we have 
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3. Preliminary results 

In this paper we applied a QRM for Survival data considering quantile function as a 

generalization of Kaplan-Meier method. For sake of space we show in Table 1 only 

models for 10-th, 20-th, 50-th, 80-th and 90-th percentiles. Parameter estimates show that, 

among the covariates here considered, the age of death of mother is always significant for 

the estimation of each quantile. In particular, the magnitude of this effect increases up to 
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the 50-th percentile, then it decreases. Substantially when the age of death of mother 

increases, the probability of dying early decreases. Sex, age of death of father and ages at 

birth of mother and father are not ever significant. It is possible observe a cohort effect 

only in later ages (80-th and 90-th percentiles), when comparing the first and the last 

cohort.  
 

Table 1 – Survival QRM for 10-th, 20-th, 50-th, 80-th and 90-th percentiles. 
Quantile Parameters DF Stima Std Error           95% CI t-value Pr > |t| 

0.1000 Intercept 

 

1 -0.5849 0.4282 -14.243 0.2544 -1.37 0.1721 

 

Sex F 1 0.2234 0.1326 -0.0365 0.4834 1.68 0.0922 

0.76 yrs Sex M 0 0 0 0 0 . . 

 

Coho_B 1866-1875 1 0.2900 0.2094 -0.1204 0.7003 1.38 0.1662 

 

Coho_B 1876-1885 1 0.1639 0.2415 -0.3095 0.6373 0.68 0.4976 

 
Coho_B 1886-1895 1 0.3461 0.1944 -0.0349 0.7270 1.78 0.0751 

 

Coho_B 1896-1905 1 -0.1183 0.1894 -0.4895 0.2530 -0.62 0.5325 

 

Coho_B 1906-1915 0 0 0 0 0 . . 

 
AgeD_M 

 
1 0.0163 0.00306 0.0103 0.0223 5.32 <.0001 

 

AgeB_M 

 

1 0.00268 0.0135 -0.0237 0.0290 0.20 0.8420 

 

AgeB_F 

 

1 -0.0127 0.0101 -0.0324 0.00706 -1.26 0.2083 

 
AgeD_F 

 
1 0.00756 0.00398 -0.00025 0.0154 1.90 0.0578 

0.2000 Intercept 

 

1 -2.1353 1.4149 -4.9086 0.6379 -1.51 0.1314 

 

Sex F 1 0.4387 0.4424 -0.4283 13.057 0.99 0.3215 

2.12 yrs Sex M 0 0 0 0 0 . . 

 

Coho_B 1866-1875 1 0.0977 0.6712 -1.2179 1.4133 0.15 0.8843 

 

Coho_B 1876-1885 1 -0.1850 0.7574 -1.6695 1.2995 -0.24 0.8071 

 
Coho_B 1886-1895 1 0.8810 1.0509 -1.1788 2.9407 0.84 0.4020 

 

Coho_B 1896-1905 1 -0.0641 0.9710 -1.9672 1.8389 -0.07 0.9473 

 

Coho_B 1906-1915 0 0 0 0 0 . . 

 
AgeD_M 

 
1 0.0584 0.0131 0.0327 0.0840 4.46 <.0001 

 

AgeB_M 

 

1 -0.00644 0.0450 -0.0946 0.0817 -0.14 0.8861 

 

AgeB_F 

 

1 -0.0226 0.0429 -0.1066 0.0615 -0.53 0.5986 

 
AgeD_F 

 
1 0.0273 0.0161 -0.00420 0.0588 1.70 0.0895 

0.5000 Intercept 

 

1 -23.9277 16.5680 -56.4003 8.5449 -1.44 0.1488 

 

Sex F 1 7.9620 4.6061 -1.0658 16.9898 1.73 0.0840 

48.55 yrs Sex M 0 0 0 0 0 . . 

 

Coho_B 1866-1875 1 -11.4976 7.1029 -25.4189 2.4237 -1.62 0.1056 

 

Coho_B 1876-1885 1 -8.1911 6.7169 -21.3560 4.9738 -1.22 0.2228 

 

Coho_B 1886-1895 1 -8.9649 7.4149 -23.4979 5.5681 -1.21 0.2268 

 

Coho_B 1896-1905 1 -7.6769 6.2107 -19.8496 4.4958 -1.24 0.2166 

 

Coho_B 1906-1915 0 0 0 0 0 . . 

 
AgeD_M 

 
1 0.6227 0.1311 0.3658 0.8796 4.75 <.0001 

 

AgeB_M 

 

1 0.2216 0.4798 -0.7189 1.1621 0.46 0.6442 

 

AgeB_F 

 

1 0.3222 0.3729 -0.4086 1.0530 0.86 0.3877 

 
AgeD_F 

 
1 0.1986 0.1540 -0.1031 0.5004 1.29 0.1971 

0.8000 Intercept 
 

1 79.8161 2.8487 74.2327 85.3994 28.02 <.0001 

 

Sex F 1 12.263 0.7876 -0.3175 27.700 1.56 0.1196 

85.14 yrs Sex M 0 0 0 0 0 . . 

 
Coho_B 1866-1875 1 -8.4651 1.4277 -11.2633 -5.6670 -5.93 <.0001 

 

Coho_B 1876-1885 1 -1.2985 1.5484 -4.3332 1.7363 -0.84 0.4018 

 
Coho_B 1886-1895 1 -0.3307 0.8788 -2.0531 1.3917 -0.38 0.7067 

 

Coho_B 1896-1905 1 -0.8557 0.9494 -2.7165 1.0051 -0.90 0.3675 

 

Coho_B 1906-1915 0 0 0 0 0 . . 

 
AgeD_M 

 
1 0.0917 0.0221 0.0483 0.1351 4.14 <.0001 

 

AgeB_M 

 

1 -0.0666 0.0759 -0.2154 0.0822 -0.88 0.3806 

 

AgeB_F 

 

1 0.0683 0.0626 -0.0543 0.1910 1.09 0.2748 

 
AgeD_F 

 
1 -0.0151 0.0206 -0.0556 0.0253 -0.73 0.4638 

0.9000 Intercept 
 

1 85.9288 3.0777 79.8966 91.9609 27.92 <.0001 

 

Sex F 1 -0.0279 0.7539 -15.056 14.498 -0.04 0.9705 

89.99 yrs Sex M 0 0 0 0 0 . . 

 
Coho_B 1866-1875 1 -6.8045 1.3017 -9.3557 -4.2533 -5.23 <.0001 

 

Coho_B 1876-1885 1 0.5960 1.1400 -1.6384 2.8304 0.52 0.6012 

 

Coho_B 1886-1895 1 0.3681 0.9254 -1.4457 2.1818 0.40 0.6909 

 
Coho_B 1896-1905 1 0.8833 1.0637 -1.2014 2.9681 0.83 0.4064 

 

Coho_B 1906-1915 0 0 0 0 0 . . 

 

AgeD_M 

 

1 0.0564 0.0189 0.0193 0.0935 2.98 0.0029 

 
AgeB_M 

 
1 -0.0666 0.0847 -0.2326 0.0994 -0.79 0.4319 

 

AgeB_F 

 

1 0.0672 0.0612 -0.0528 0.1873 1.10 0.2725 

 

AgeD_F 

 

1 -0.00535 0.0247 -0.0537 0.0430 -0.22 0.8283 

 



The Figures 1-2-3 show how only for age of death of mother the distribution of estimated 

quantiles have a particular stretched triangular-shaped distribution and how confidence 

intervals are narrow, particularly on tails. 

 
 

Figures 1-2-3 – Distribution of estimated quantiles for each covariate and their confidence intervals. 
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