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Abstract 

Life history data are generally incomplete. Respondents enter observation late (left 

truncation) or leave early (right censoring). In survival analysis, these limitations are 

considered in the estimation of hazard rates. Rates are estimated from data on 

different respondents with different observation periods (observation windows). In 

multistate modeling, transition rates also integrate information on different 

individuals.  

 

By combining data from different but similar individuals, life histories can be 

modeled. The life history that results is a synthetic life history.  It is not observed and 

it does not tell anything about a particular individual. It tells something about the 

population the individual is part of. A synthetic biography summarizes information on 

several individuals. The collective experience is summarized in transition rates. The 

individual is a fictitious individual, referred to as virtual individual or statistical 

individual (Courgeau, 2012). A population of virtual individuals is a virtual 

population. The life history of such an individual is not directly observed but is an 

outcome of a probability model, the parameters of which are estimated from empirical 

data. Life histories are generated from models using microsimulation in continuous 

time. 

 

Several life course indicators may be derived from transition rates. They include 

probabilities of significant transitions, probabilities of having reached particular 

stages in life, expected durations of stages of life, and expected ages at significant 

transitions.  

 

The methods are illustrated using data from the German Life History Survey (GLHS). 

It is a subsample also used by Blossfeld and Rohwer (2002) in their book Techniques 

of Event History Modeling. In the paper, references are made to R packages for 

multistate modelling and analysis, in particular mvna, etm, msm, mstate, ELECT and 

Biograph.  
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1. Introduction 
 

Life history data are generally incomplete. They do not cover for each individual in 

the study the entire life span or the life segment of interest. If data are collected 

retrospectively, information is missing on events and experiences after the interview 

date. Data collected prospectively are incomplete because events and other 

experiences are recorded during a limited period of time only. Information on life 

before or after the period of observation is missing. By combining data from different 

but similar individuals, statements can be made about life histories and wider 

segments of life can be modelled. The life history that results is a synthetic life 

history.  It is not observed and it does not tell anything about a particular individual. It 

tells something about the population the individual is part of. A synthetic biography 

summarizes information on several individuals. It is a technique of data reduction. 

The synthetic biography is the life course that would result if an individual lives a life 

prescribed by the collective experience of similar individuals under observation. The 

collective experience is summarized in transition rates. These rates play a key role in 

generating synthetic biographies. They are estimated from life history data using the 

theory of statistical inference and in particular the theory of counting processes. 

Several life course indicators are derived from the transition rates. They include 

probabilities of significant transitions in life, probabilities of having reached particular 

stages in life at given ages, expected durations of stages of life, and expected ages at 

significant transitions. Transition rates and the life course indicators derived from 

them are sometimes combined in a table, known as the multistate life table. The 

multistate life table originated in demography (Rogers, 1975), but it is currently used 

across disciplines. The synthetic biography considered in this paper one of many 

plausible life histories. It is the most likely life history given the data. Individual life 

histories that are derived from the transition rates may deviate from the most likely 

life path because of chance. The distribution of individual life histories around the 

expected life path is documented by interval estimates of the main biographic 

indicators.  

 

Two examples may clarify the concept of synthetic biography. The first relates to the 

length of life and the second to marriage and fertility. 

a. Suppose we want to know how long a 60-year old may expect to live. The 

empirical evidence consists of a 10-year follow-up of 1000 individuals aged 

60 and over. At the beginning of the observation period, some individuals are 

relatively young (60 years, say) while others are already old (over 90, say). 

During the observation period of 10 years, some individuals die. The oldest 

old are more likely to die than other individuals under observation. To 

determine the expected remaining lifetime for a 60-year old, one could 

calculate the mean age at death of those who die during the observation 

interval. The observed mean age at death provides a wrong answer, however. 

It depends on the age composition of the population under observation. If the 

group under observation consists of many old persons, the mean age at death 

will be higher than for a group that consists mainly of persons in their sixties 

and seventies. To remove the effect of the age composition, death rates are 

calculated by age. The rates are then applied to a hypothetical individual who 

moves through life and experiences at each age the mortality level that is 

observed for that age. The expected age at death is 60 plus the expected 
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remaining lifetime or life expectancy. The life expectancy of a 60-year old is 

the number of years that the individual may expect to live if at each age over 

60 he experiences the age-specific mortality rate estimated during the 10-year 

follow-up of 1000 individuals. At young ages, he experiences the mortality 

rates of individuals who were 60 recently. At older ages the mortality rates are 

from old persons who turned 60 many years ago.  

b. The second illustration considers marriage and fertility. Suppose we want to 

know at what age women start marriage and at what duration of marriage they 

have their first child. It is not possible to follow all women until they have 

their first child since some will remain childless. Suppose the data are from a 

5-year follow-up survey of girls and women aged 15 to 35 at the onset of 

observation. At the end they are 20 to 40. During the follow-up, the age at 

marriage and the age at birth of the first child are recorded. At the start of 

observation, some individuals are already married. Other individuals remain 

unmarried during the entire period of observation. They may marry after 

observation is discontinued or they may not marry at all. To determine the age 

at marriage and the duration of marriage at time of birth of the first child, the 

empirical evidence is summarized in age-specific transition rates: marriage 

rates and first birth rates. The rates are applied to hypothetical and identical 

individuals of age 15 assuming that at consecutive ages they experience the 

empirical rates of marriage and first birth. Transition rates may depend on 

covariates and other factors.  

 

The synthetic biography is realistic, i.e. is an accurate representation of the 

population, if (a) individuals under observation are similar to individuals not included 

in the study, (b) the experiences in different stages of life do not change rapidly in 

time and (c) the intercohort variation is limited. Two issues dominate this research 

field: (1) the estimation of transition rates from data and (2) the generation of 

synthetic biographies from transition rates. The two issues constitute the subject of 

this paper. The estimation of transition rates is covered in Section 2. Transition and 

state occupation probabilities are computed from transition rates. That is the subject 

of Section 3. The computation of expected occupation times is covered in Section 4. 

The generation of synthetic life histories is discussed in Section 5. Section 6 is the 

conclusion.  

 

The methods presented in this paper are illustrated using employment data from a 

subsample of 201 respondents of the German Life History Survey (GLHS). Two 

states are distinguished: employed (Job) and not employed (Nojob). Transitions are 

from employed to not employed (JN) and from not employed to employed (NJ). Dates 

of transitions are given in months; it is assumed that transitions occur at the beginning 

of a month. In the paper, references are made to R packages for multistate modeling 

and analysis, in particular mvna (Allignol, 2012; Allignol et al., 2008), etm (Allignol, 

2013; Allignol et al., 2011), msm (Jackson, 2011, 2013), mstate (Putter et al., 2012; de 

Wreede et al., 2010, 2011), dynpred (Putter, 2011), ELECT (van den Hout, 2012) and 

Biograph (Willekens, 2013).  

 

2. Transition rates 

 

Two broad approaches for estimating transition rates are covered. In the two 

approaches time is treated as a continuous variable and transition rates are estimated 
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by relating occurrences to exposures. Continuous time means that a time period is 

partitioned in a large number of very small (infinitesimally small) time intervals. The 

two approaches differ in the time-dependence of transition rate. In the first approach, 

no restriction is imposed on the time dependence. The variation is entirely free. In the 

second approach, the variation in time is restricted to follow a particular pattern 

described by a transition rate model. The first approach is non-parametric; the second 

is parametric. The two approaches are covered by Aalen et al., (2008). The approach 

selected has implications for the computation of transition rates, transition and state 

occupation probabilities, and other life-course indicators. 

 

In the non-parametric analysis of life history data, cumulative transition rates are 

estimated each time a transition occurs. The function that describes cumulative 

cumulative transition rates by age is a step function. It implies that between 

observations the transition rate is the one estimated at the last observation. The shape 

of the function is entirely free, not influenced by an imposed time dependence. The 

cumulative transition rate is said to be empirical. In the second approach the time 

dependence is restricted to follow an imposed pattern. A convenient and simple 

restriction is a constant transition rate. If the transition rate is constant, the cumulative 

transition rate increases linearly in time and the survival function is exponential. The 

restriction of constant rate may be relaxed by keeping a rate constant within relatively 

narrow age intervals and let the rate vary freely between age intervals. Because of the 

imposed time dependence, it is not needed to estimate the cumulative transition rate 

each time a transition occurs. It suffices to estimate the cumulative transition rate at 

the end of each time interval. The cumulative hazard function is not a step function. It 

is a piecewise-linear function: linear within age intervals with slopes varying between 

intervals. The two approaches differ slightly but at the limit when the time interval 

becomes infinitesimally small, they coincide. The first approach is common in 

biostatistics, while the second is common in the life-table method of demography, 

epidemiology and actuarial science. Covariates may be introduced in each approach. 

The cumulative transition rates may be estimated at each level of covariate or a 

regression model may be used. A (piecewise) constant transition rate is only one of 

the many possible restrictions imposed on the age dependence of transition rates. In 

demography, biostatistics, epidemiology and other fields, a large number of models 

are used to describe age dependencies of rates. These models are beyond the scope of 

this paper. 

 

A number of software packages in R implement the non-parametric method. They 

include mvna and mstate. The packages msm and Biograph implement the parametric 

method, more particularly the piecewise-constant transition rate model: the transition 

rate varies freely between age intervals of one year and is constant within an age 

interval.  

 

In multistate modelling, a personal attribute is represented by a state variable and a 

particular value of the attribute by the value of the state variable. Since a value refers 

to a state, the value indicates a state occupied. A change in state occupied implies a 

transition between states. The rate of transition at a given point in time or during a 

given period depends on the number of transitions and the numbers of persons under 

observation and at risk just before a transition occurs. In multistate modelling, the 

state occupied determines whether an individual is at risk. That basic principle allows 

complex observation schemes. Individuals may be at risk but not under observation. It 
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is not practical to track every individual from birth to death to record occurrences and 

monitor risk sets and periods at risk. Observations are incomplete because the period 

of observation is too short to cover the entire life span. Some individuals may not be 

present and at risk at the onset of observation; they enter at some later time during the 

observation. Individuals may leave the population at risk during the period of 

observation because they experience the transition of interest and are no longer at risk 

of the transition, or they experience an event that is unrelated to the transition but that 

implies a withdrawal from the population at risk. Individuals who leave the 

population at risk may return later and be at risk again. Counting transitions and 

tracking exposures necessarily take place during periods of observation. Transitions 

and exposures outside the observation period are not recorded. The non-occurrence of 

a transition during a period of observation to persons at risk of that transition is 

however useful information that should not be omitted. The proportion of individuals 

under observation and at risk that experiences a transition is an estimator of the 

likelihood of a transition. Individuals under observation are at risk include individuals 

who experience a transition and individuals who do not experience a transition. These 

two possibilities are represented in the likelihood function. 

 

The measurement of time requires a time scale. Age is a logical time scale for 

studying life histories. Other time scales are calendar time and time since a reference 

event. Birth, marriage, labour market entry, and entry into observation are examples 

of reference events. The standard approach in survival analysis is to use time since the 

baseline survey or (first) entry into the study (time-on-study). Time-on-study has no 

explanatory power, which is acceptable if time dependence of a transition rate is not 

of interest, such as in the Cox model with free baseline hazard. In studies of the life 

course, age is an important proxy for stage of life. Korn et al. (1997) argue that time-

on-study is not appropriate for predicting transition rates. They recommend age as the 

time scale (see also Pencina et al., 2007 and Meira-Machado et al., 2009). In this 

book, age is the main time scale. A transition may occur any time, hence time and age 

at transition are continuous random variables. T will be used to denote time or age 

and X will be used to denote age.  A realization of T is t and a realization of X is x. 

Continuous time is approximated by dividing a period in very small time intervals. A 

small interval following time t is denoted by [t,t+dt), where dt is the length of the 

interval, [ means that t is not included in the interval and ) that t+dt is included. A 

small interval following age x is [x,x+dx). When is an interval small? An interval is 

considered small when at most one transition occurs in the interval.  

 

In the employment data used for illustrative purposes (GLHS), two states are 

distinguished (J and N) and two transitions: NJ and JN. Individuals in state N are at 

risk of the NJ transition and individuals in J are at risk of the JN transition. No 

distinction is made between jobs. Transitions between jobs are removed from the data 

using the Biograph function Remove.intrastate. Labour-market entry (first 

jobs) is selected as onset of the observation. In the original data, birth is the onset 

of observation. The period between birth and labour market entry is removed 

using Biograph’s ChangeObservationWindow.e function. Table 2.1 shows 

the data for a selection of 10 respondents. Two variants are presented. The first 

shows calendar dates at transition. The second shows ages, except for the birth 

date, which is given in the original GLHS coding; namely, Century Month Code 
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(CMC). Calendar dates and ages are derived from CMC using Biograph’s 

date_b function.  
 

d <- Remove.intrastate(GLHS) 

dd <- ChangeObservationWindow.e (Bdata=d, 

    entrystate="J", 

    exitstate=NA) 

d3.a <- date_b (Bdata=dd, 

    format.in="CMC", 

    selectday=1, 

    format.out="age") 

 

The 10 individuals experience 33 episodes (20 job episodes and 13 episodes without a 

job). They experience 23 transitions during the observation period (13 JN transitions 

and 10 NJ transitions). Individual 2 is born in September 1929 and enters the labour 

market (first job) in May 1949 at age 19. She leaves the first job in May 1974 at age 

44 and remains without a paid job until the end of the observation period in 

November 1981, when she is age 52. Individuals 1,5 and 7 are employed throughout 

the observation period. They move between jobs but they do not experience a period 

without a job. Individuals 3, 4, 6, 8, 9 and 10 have several jobs, separated by periods 

without a job. Observation periods differ between individuals. In this paper, we 

estimate transition rates for the JN and NJ transitions, transition probabilities, state 

occupation probabilities and expected state occupation times for the subsample of 201 

respondents. For illustrative purpose, a selection of the 10 respondents shown in 

Table 2.1 is also used. The focus is on the method and not on the application.  

 

Table 2.1 Subsample of German Life History Survey (GLHS) 
a. Calendar dates 

    ID  born start   end    sex  path   Tr1   Tr2   Tr3   Tr4 

1    1 Mar29 Mar46 Nov81   Male     J  <NA>  <NA>  <NA>  <NA> 

2    2 Sep29 May49 Nov81 Female    JN May74  <NA>  <NA>  <NA> 

3   67 Dec39 Feb55 Nov81 Female  JNJN Sep58 Aug70 Mar80  <NA> 

4   76 Jun51 Oct69 Nov81   Male JNJNJ Apr70 May72 Jan76 Apr76 

5   82 Jun51 Aug74 Nov81 Female     J  <NA>  <NA>  <NA>  <NA> 

6   96 Feb39 Apr57 Nov81 Female JNJNJ Apr62 Apr64 Feb65 Nov68 

7   99 May40 Sep58 Nov81   Male     J  <NA>  <NA>  <NA>  <NA> 

8  180 Aug40 Aug54 Nov81   Male JNJNJ Apr56 Apr59 Jul61 Jan63 

9  200 Nov50 Sep68 Dec81   Male JNJNJ Apr70 Jan72 Jan74 Jan79 

10 208 May40 Jul59 Nov81 Female  JNJN May61 Nov61 Dec62  <NA> 

 

b. Ages 

    ID born  start    end    sex  path    Tr1    Tr2    Tr3    Tr4 

1    1  351 17.000 52.667   Male     J     NA     NA     NA     NA 

2    2  357 19.667 52.167 Female    JN 44.667     NA     NA     NA 

3   67  480 15.167 41.917 Female  JNJN 18.750 30.667 40.250     NA 

4   76  618 18.333 30.417   Male JNJNJ 18.833 20.917 24.583 24.833 

5   82  618 23.167 30.417 Female     J     NA     NA     NA     NA 

6   96  470 18.167 42.750 Female JNJNJ 23.167 25.167 26.000 29.750 

7   99  485 18.333 41.500   Male     J     NA     NA     NA     NA 

8  180  488 14.000 41.250   Male JNJNJ 15.667 18.667 20.917 22.417 

9  200  611 17.833 31.083   Male JNJNJ 19.417 21.167 23.167 28.167 

10 208  485 19.167 41.500 Female  JNJN 21.000 21.500 22.583     NA 

 

Individual 4 (with ID 76) will be singled out for a detailed description. He gets his 

first job in October 1969 at age18 and remains employed until April 1970. He is not 
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employed for about two years, until he gets another job in May 1972. From January to 

April 1976 he experiences another period without employment. The individual 

experiences the JN transition two times during the observation period, in April 1970 

at age 18 and in January 1976 at age 24. From 1
st
 October 1969 to 31

st
 March 1970 he 

is at risk of the first occurrence of the JN transition and from 1
st
 May 1972 to 31

st
 

December 1975 he is at risk of the second occurrence. From 1
st
 April 1976 he is at 

risk of a third occurrence but does not experience the JN transition before the end of 

the observation on 1
st
 November 1981. The individual experiences three job episodes, 

two end in a JN transition and one ends because observation is terminated (censored). 

In addition, the respondent experiences two episodes without a job. They end with a 

new job.  

 

In a counting process perspective, the estimation of transition rates involves two 

tasks. The first is to count transitions during the observation period. The second is to 

track the population at risk. The two tasks are briefly described. Let k denote an 

individual. Transitions are denoted by the origin state and the destination state. The 

number of states is I and any two states are denoted by i and j. Let kNij(t1,t2) denote 

the number of times individual k experiences the (i,j)-transition during a period of 

observation from t1 to t2. Without loss of generality, in this section I assume that t1=0 

and represent t2 by t. The observation interval is therefore from 0 to t. The variable 

kNij(0,t) is denoted by kNij(t). The number of transitions cannot be predicted with 

certainty, hence kNij(t) is a random variable. The distribution of the random variable 

may be described by a probability model and, more particularly, a stochastic process 

model. A widely used model is the Poisson process model, where changes (‘jumps’) 

occur randomly and are independent of each other (Çinlar, 1975). The sequence of 

random variables {kNij(t); t0} is a random process, known as a counting process 

(Aalen et al., 2008, p. 25). The counting process is a continuous process. The 

increment in kNij(t) during the small interval between t and t+dt is denoted by dkNij(t). 

It is a binary variable with possible values 0 (no transition) and 1 (transition). 

Individual counting processes are aggregated to obtain the aggregated process: 

, where K is the number of individuals in a (sample) population. 

If dt is sufficiently small to make the counting process absolutely continuous, at most 

one transition occurs in the interval dt. A consequence is that no two individuals have 

the same event time.  

 

The second task is to track the population at risk, i.e. exposed to the risk of 

experiencing a given transition. A main issue in survival analysis, and in multistate 

modelling in particular, is to determine who is at risk at time t and who is not. 

Individuals may experience a transition between t and t+dt if and only if they are at 

risk at time t, i.e. just before the interval [t,t+dt). If individual i is at risk at t, he/she is 

at risk during the infinitesimally small interval from t to t+dt. An individual is at risk 

of the (i,j)-transition if he is in state i. Let kYi(t) be a binary variable, which takes the 

value of 1 if individual k is in state i at time t and 0 if the individual is not at risk. 

kYi(t) is a binary random variable. The number of individuals in state i just before 

time t and therefore at risk of the (i,j)-transition is . It is often 

referred to as the risk set. The sequence of {Yi(t), t0}  is the at risk process or 

exposure process, which is the process that describes the changes in the risk set or 

population at risk. Yi(t) changes when individuals enter or leave state i and when 
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observation starts or ends. In many studies, Yi(t) is large relative to numbers of (i,j)-

transitions. That observation will be used for estimating the variance of the transition 

rate.  

 

During the observation period from 0 to t, the total duration individual k is at risk of 

experiencing the (i,j)-transition is . The total duration at risk 

(exposure time) may be spread over multiple ‘at risk’ episodes. This counting process 

approach allows late entry, exit and re-entry in state i.  

 

The counting process is a random process, which can be modelled by a Poisson 

process. The parameter of the model is the transition rate. The transition rate in the 

small time interval [t,t+dt) is referred to as the instantaneous transition rate and is 

denoted by kij(t). The counting process approach to the Poisson process describes the 

intensity of the process in terms of the instantaneous transition rate and exposure 

status. It adds exposure status to the conventional description in probability theory of 

the Poisson process. Aalen et al. (2008) write the intensity at time t as the product of 

the instantaneous transition rate and the indicator function kYi(t), which is equal to 1 if 

individual k is at risk just before t and 0 otherwise: . The 

intensity function is the transition rate function weighted by the exposure status. If 

individual k is not at risk at t, the intensity is zero although the transition rate may be 

positive. The product kij(t)dt is the probability that individual k experiences the (i,j)-

transition during the small time interval to to t+dt, provided that just prior to the 

interval k is at risk of the (i,j)-transition, i.e. is in state i. It is the product of the 

intensity and the length of the interval. The probability is conditioned on being at risk. 

In survival analysis, that condition is usually imposed by the statement ‘provided that 

the event has not occurred yet’. That condition applies in case of a single event, 

because an individual  is at risk as long as (1) the event has not occurred yet and (2) 

the individual is under observation. In the case of repeatable transitions or different 

types of transitions, an individual may be under observation but not at risk. In the 

example of employment, an individual in state N is under observation but not at risk 

of the JN transition.  

 

If at most one transition may occur during the interval dt, the probability of 

occurrence is equivalent to the probability that kNij(t) changes to kNij(t)+1, the 

probability that the transition occurs at t, Pr(d kNij (t)=1), and the probability that the 

transition time kTij is in the [t,t+dt) interval: Pr(t  kTij < t+dt). Since dkNij(t) is a 

binary variable, the probability that dkNij(t) is one is equal to the expected value of 

dkNij(t), hence kij(t) dt = E[dkNij(t)]. Note that kNij(t) and its increment dkNij(t) are 

observations, whereas kij(t) is a model of the increment dkNij(t) (Poisson process 

model that satisfies the two conditions listed above). kij(t) is the intensity process of 

the counting process kNij(t).  

 

If individuals are independent of each other, the intensity process of the aggregated 

counting process Nij(t) is . If in addition all individuals have the 

same hazard rate, i.e. for all k, then the survival times are independent 

and identically distributed. The aggregate intensity process may be written as: 

, where Yi(t) is the number of 
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individuals in state i just before t. It is the population at risk. The model 

 is the multiplicative intensity model for a counting process (Aalen 

et al., 2008, p. 34). ij(t) is a nonnegative function of t. In the multiplicative intensity 

model, the at risk process Yi(t) does not depend on unknown parameters (Aalen et al., 

2008, p. 77). That condition is satisfied if the population at risk is large relative to the 

number of transitions. The same condition was introduced by Holford (1980) and 

Laird and Olivier (1981) in the context of estimating (piecewise-constant) transition 

rates with log-linear models. The transition rates ij(t) are key model parameters and a 

main aim of statistical analysis is to determine how they vary over time and depend 

on covariates. The analysis is complicated by incomplete observation of life histories.  

 

The observed increment dNij(t) of the counting process Nij(t) generally differs from 

the model estimate ij(t)dt because observations do not meet the conditions imposed 

by the Poisson process. Aalen et al. (2008, p. 27) refer to the difference as noise and 

to the probability of a transition during the interval dt as signal. The noise cumulated 

up to time t is the martingale Mij(t) and dMij(t) is the increment in noise during the 

small interval following t: dMij(t) = dNij(t) - ij(t) dt. The intensity process and the 

noise process are stochastic processes, whereas Nij(t) represents observations. Note 

that ,  and , where ij(t) is 

the cumulative intensity process, that is the expected number of transitions up to time 

t, predicted by the Poisson model. The martingale is the difference between the 

counting process and the cumulative intensity process. It can be interpreted as 

cumulative noise. The intensity process is central to the statistical modelling of event 

occurrences and transitions between states. Note that the intensity process depends on 

the transition rate and the at risk process.  

 

A frequently used measure in multistate modelling is the cumulative hazard 

, where  is equal to the increment in the cumulative hazard 

during an infinitesimally small interval. In case of a continuous process, quantity 

. The transition rates ij(t) and the cumulative transition rate Aij(t) are 

estimated from the data. Two types of methods are used: the non-parameteric method 

and the parametric method. They are discussed below.  

 

a. Non-parametric method 

 

Recall that Nij(t) is the number of (i,j)-transitions experienced by individuals in the 

(sample) population during the observation interval from 0 to t and kTij is the time at 

which individual k experiences the transition from state i to stage j. Tij denotes the 

time any individual in the (sample) population experiences an (i,j)-transition. For the 

estimation of empirical transition rates (non-parametric), the occurrences are ordered 

by time of occurrence. Let  denote the time of the n-th occurrence of the (i,j)-

transition experienced in the (sample) population. The number of individuals at risk 

just before  is . Consider the time interval [t,t+dt). If in a population no event 

occurs in the interval, the natural estimate of  is zero. If a transition is 

recorded during the interval, the natural estimate is 1 divided by the number of 

individuals at risk, that is 1/Yi(t) or the proportion of individuals at risk that 

experiences a transition. Aggregating these contributions over all time intervals at 
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which transitions occur, up to time t, gives the estimator  of Aij(t). A natural 

estimator of the cumulative transition rate at time t is , where 

numerator and denominator are aggregations over all individuals. If transition times 

are , then the estimator is , where  is the time at the n-th 

occurrence of the (i,j)-transition. The estimator is known as the Nelson-Aalen 

estimator. The estimator was initially developed by Nelson and extended to event 

history models and Markov processes by Aalen, who adopted a counting process 

formulation (see Aalen et al., 2008, pp. 70ff). The Nelson-Aalen estimator 

corresponds to the cumulative hazard of a discrete distribution, with all its probability 

mass concentrated at the observed transition times. The matrix  is a matrix of 

step functions with jumps at transition times. 

 

The variance of the Nelson-Aalen estimator is  (Aalen 

variance). The variance increases with t. The increment is . In 

large samples, the Nelson-Aalen estimator at time t is approximately normally 

distributed. Therefore the 95 percent confidence interval is . If the 

sample size is small, the approximation to the normal distribution is improved by 

using a log-transformation giving the confidence interval  

 

(Aalen et al., 2008, p. 72).  

 

Consider the employment careers of the 10 individuals, shown in Table 2.1. To track 

individuals at risk, ages at entry into observation and exit from observation, and ages 

at transition should be ordered. Individual 8 enters observation at age 14.00, followed 

by individual 3 at age 15.16. The first transition occurs at age 15.67 when individual 8 

enters a period without a job. At that time, 2 individuals are at risk of the JN transition 

(3 and 8). The Nelson-Aalen estimator of the cumulative transition rate at that time is 

½. The next event is at age 17.00 when individual 1 enters observation. Just before 

that age, individual 3 is at risk in J and individual 8 in N. At age 17.00, individual 1 

joins 3 in J. The next event is at age 17.83 when individual 9 enters observation. 

When individual 6 enters observation at age 18.17, three individuals are in J and one 

in N. Individuals 4 and 7 enter observation at age 18.33. At age 18.67, individual 8 

enters J again. Just before that age, he is the only person in N and at risk of the NJ 

transition, while 6 individuals are in J. Hence the estimator of the hazard is 1. The 

next event is at age 18.75,when individual 3 leaves J and enters a period without a 

job. At that time 7 individuals are in J and at risk of the JN transition (1,3,4,6,7,8,9). 

The cumulative JN transition rate 1/2 +1/7=0.64. The Aalen variance is (1/2)
2
 + (1/7)

 

2
 =0.270. At that time, three individuals have not yet entered observation and do not 

contribute to the cumulative hazard estimation (2,5 and 10). The cumulative transition 

rate increases to age 44.67 when individual 3 enters a period without a job. At that 

age, the cumulative transition rate is 2.696 and the Aalen variance is 0.764. Table 2.2 

shows the Nelson-Aalen estimator based on data of the 10 respondents. The columns 
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are: age at entry into observation, exit from observation or transition, the population at 

risk just prior to the transition (nrisk), the occurrence of a transition (nevent) and 

censoring (ncens), the Nelson-Aalen estimator of the cumulative transition rates 

(cumhaz) and the Aalen estimator of the variance (var). The information is shown 

each time a transition occurs or a respondent enters or leaves observation. The last 

column is the increments in the cumulative hazards (delta). The number of events 

is less than the number of entries (10) + the number of exits (10) + the number of JN 

transitions (13) + the number of NJ transitions (10), because individuals 3 and 7 enter 

observation at the same time, individual 5 enters observation when individuals 6 and 

9 experience a JN transition, and individuals 4 and 5 leave observation at the same 

time, as do individuals 7 and 10. The table is produced by the mvna function of the 

mvna package. The last column is produced by the etm function of the etm package 

(see below). The following code is used: 

 
library (mvna) 

d.10 <- subset 

(d3.a,d3.a$ID%in%c(1,2,67,76,82,96,99,180,200,208)) 

attr (d.10,"format.date") <- "age" 

param <- Parameters (d.10) 

attr (d.10,"param") <- param 

 

D<- Biograph.mvna (d.10) 

tra <- matrix(ncol=2,nrow=2,FALSE) 

tra[1, 2] <- TRUE 

tra[2,1] <- TRUE 

na <- mvna(data=D$D,c("J","N"),tra,"cens") 

etm.0 <- etm(data=D$D,c("J","N"),tra,"cens",s=0) 

 

gg.1 <- cbind (round(na$"J 

N"$time,4),na$n.risk[,1],unname(aperm(na$n.event,c(3

,2,1))[,2,1]),na$n.cens[,1],round(na$"J N"$na,4), 

round(na$"J N"$var.aalen,3),round(aperm 

(etm.0$delta.na,c(3,2,1))[,2,1],4)) 

dimnames (gg.1) <- list 

(1:37,c("age","nrisk","nevent","ncens","cumhaz","var

","delta")) 

gg.2 <- cbind (round(na$"N 

J"$time,4),na$n.risk[,2][na$time %in% na$"N 

J"$time],unname(aperm(na$n.event,c(3,2,1))[,1,2])[na

$time %in% na$"N J"$time],na$n.cens[,2][na$time %in% 

na$"N J"$time],round(na$"N J"$na,4), round(na$"N 

J"$var.aalen,3),round(aperm 

(etm.0$delta.na,c(3,2,1))[,1,2][na$time %in% na$"N 

J"$time],4)) 

dimnames (gg.2) <- list 

(1:nrow(gg.2),c("age","nrisk","nevent","ncens","cumh

az","var","delta")) 

 

with d.10 the Biograph object for a selection of 10 respondents.  Note that D$D ia an 

object with data of 10 respondents in mvna format.   
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Table 2.2 Nelson-Aalen estimator and Aalen variance of  cumulative transition rates. 

GLHS, random subsample of 10 respondents.   
Transition JN 

       age nrisk nevent ncens cumhaz   var  delta 

1  14.0000     1      0     0 0.0000 0.000 0.0000 

2  15.1667     1      0     0 0.0000 0.000 0.0000 

3  15.6667     2      1     0 0.5000 0.250 0.5000 

4  17.0000     1      0     0 0.5000 0.250 0.0000 

5  17.8333     2      0     0 0.5000 0.250 0.0000 

6  18.1667     3      0     0 0.5000 0.250 0.0000 

7  18.3333     4      0     0 0.5000 0.250 0.0000 

8  18.6667     6      0     0 0.5000 0.250 0.0000 

9  18.7500     7      1     0 0.6429 0.270 0.1429 

10 18.8333     6      1     0 0.8095 0.298 0.1667 

11 19.1667     5      0     0 0.8095 0.298 0.0000 

12 19.4167     6      1     0 0.9762 0.326 0.1667 

13 19.6667     5      0     0 0.9762 0.326 0.0000 

14 20.9167     6      1     0 1.1429 0.354 0.1667 

15 21.0000     6      1     0 1.3095 0.382 0.1667 

16 21.1667     5      0     0 1.3095 0.382 0.0000 

17 21.5000     6      0     0 1.3095 0.382 0.0000 

18 22.4167     7      0     0 1.3095 0.382 0.0000 

19 22.5833     8      1     0 1.4345 0.397 0.1250 

20 23.1667     7      2     0 1.7202 0.438 0.2857 

21 24.5833     6      1     0 1.8869 0.466 0.1667 

22 24.8333     5      0     0 1.8869 0.466 0.0000 

23 25.1667     6      0     0 1.8869 0.466 0.0000 

24 26.0000     7      1     0 2.0298 0.486 0.1429 

25 28.1667     6      0     0 2.0298 0.486 0.0000 

26 29.7500     7      0     0 2.0298 0.486 0.0000 

27 30.4167     8      0     2 2.0298 0.486 0.0000 

28 30.6667     6      0     0 2.0298 0.486 0.0000 

29 31.0833     7      0     1 2.0298 0.486 0.0000 

30 40.2500     6      1     0 2.1964 0.514 0.1667 

31 41.2500     5      0     1 2.1964 0.514 0.0000 

32 41.5000     4      0     1 2.1964 0.514 0.0000 

33 41.9167     3      0     0 2.1964 0.514 0.0000 

34 42.7500     3      0     1 2.1964 0.514 0.0000 

35 44.6667     2      1     0 2.6964 0.764 0.5000 

36 52.1667     1      0     0 2.6964 0.764 0.0000 

37 52.6667     1      0     1 2.6964 0.764 0.0000 

 

Transition NJ 

       age nrisk nevent ncens cumhaz   var  delta 

1  17.0000     1      0     0 0.0000 0.000 0.0000 

2  17.8333     1      0     0 0.0000 0.000 0.0000 

3  18.1667     1      0     0 0.0000 0.000 0.0000 

4  18.3333     1      0     0 0.0000 0.000 0.0000 

5  18.6667     1      1     0 1.0000 1.000 1.0000 

6  18.8333     1      0     0 1.0000 1.000 0.0000 

7  19.1667     2      0     0 1.0000 1.000 0.0000 

8  19.4167     2      0     0 1.0000 1.000 0.0000 

9  19.6667     3      0     0 1.0000 1.000 0.0000 

10 20.9167     3      1     0 1.3333 1.111 0.3333 
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11 21.0000     3      0     0 1.3333 1.111 0.0000 

12 21.1667     4      1     0 1.5833 1.174 0.2500 

13 21.5000     3      1     0 1.9167 1.285 0.3333 

14 22.4167     2      1     0 2.4167 1.535 0.5000 

15 22.5833     1      0     0 2.4167 1.535 0.0000 

16 23.1667     2      0     0 2.4167 1.535 0.0000 

17 24.5833     4      0     0 2.4167 1.535 0.0000 

18 24.8333     5      1     0 2.6167 1.575 0.2000 

19 25.1667     4      1     0 2.8667 1.637 0.2500 

20 26.0000     3      0     0 2.8667 1.637 0.0000 

21 28.1667     4      1     0 3.1167 1.700 0.2500 

22 29.7500     3      1     0 3.4500 1.811 0.3333 

23 30.4167     2      0     0 3.4500 1.811 0.0000 

24 30.6667     2      1     0 3.9500 2.061 0.5000 

25 31.0833     1      0     0 3.9500 2.061 0.0000 

26 40.2500     1      0     0 3.9500 2.061 0.0000 

27 41.2500     2      0     0 3.9500 2.061 0.0000 

28 41.5000     2      0     1 3.9500 2.061 0.0000 

29 41.9167     1      0     1 3.9500 2.061 0.0000 

30 52.1667     1      0     1 3.9500 2.061 0.0000 

 

The time-continuous model of the counting process {Nij(t), t0} assumes that not 

more than one transition occurs in an interval. In practice and in particular in large 

samples, more than one individual may experience the transition in the same time 

interval (e.g. same day). If multiple transitions occur in the same interval, their times 

of occurrence are referred to as tied transition times. Tied transition times may be a 

consequence of (a) grouping and rounding or (b) time intervals that are genuinely 

discrete. For instance, if instead of days or months seconds are used as time units, it is 

unlikely that more than one transition occurs at the same time. If tied transition times 

are due to grouping and rounding, the interval may be divided in even smaller 

intervals and the transition times ordered. The increment in the Nelson-Aalen 

estimator of the cumulative hazard at time  may be written as 

 (Aalen et al., 2008, p.84). If the time intervals are 

genuinely discrete, the increment in the Nelson-Aalen estimator at time 

is , where  is the population at risk just prior to the interval 

and dn is the number of transitions recorded at time . In the presence of tied 

transition times, the variance of the Nelson-Aalen estimator needs to be adjusted. 

When tied event times are a consequence of grouping or rounding, the increment in 

the variance is . In case of discrete time intervals, the 

increment in the variance is estimated by . Aalen et al. 

(2008, p. 85) report that the numerical difference between the two approaches to tie 

correction is usually quite small, and it is not very important which of the two one 

adopts.  
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b. Parametric method: exponential and piecewise exponential models 

 

The Nelson-Aalen estimator is nonparametric. The shape of the hazard function is not 

constrained in any way. In a parametric counting process model, the time dependence 

of the transition rate is constrained and consequently the waiting times to a transition 

are constrained. It is assumed that there is a continuous-time process underlying the 

data. In addition, the transition rate may depend on covariates. Covariates are not 

considered in this paper. Two models are considered in this paper. The first is the 

exponential model, which imposes a constant transition rate and an exponential 

waiting time distribution. The second model is a piecewise exponential model, which 

imposes piecewise-constant transition rates. Transitions rates are assumed to be 

constant in age intervals of usually one year. The transition rates of consecutive age 

groups are unrelated, i.e. no restrictions are imposed on how the piecewise-constant 

rates vary with age. The estimation method therefore combines a parametric approach 

(within intervals) and a non-parametric approach (between intervals). Individuals are 

assumed to be independent and to have the same instantaneous transition rate. In other 

words, transition times of the individuals in the (sample) population are assumed to be 

independent and identically distributed. The estimation of piecewise exponential 

models and occurrence-exposure rates received considerable attention in the literature 

(see e.g. Hoem and Funck Jensen, 1982, Tuma and Hannan, 1984, Hougaard, 2000, 

Blossfeld and Rohwer, 2002, Aalen et al., 2008, Van den Hout and Matthews, 2008, 

Li et al., 2012). Mamun (2003) and Reuser et al. (2010), who study the effect of 

covariates on disability and mortality, impose the restriction that the piecewise-

constant transition rates (occurrence-exposure rates) increase exponentially with age. 

The result is a Gompertz model with piecewise constant transition rates. The choice 

of model is determined by the age profile of transition rates (exponential increase) and 

data limitations. Parametric models of transition rates covering the entire age range in 

multistate models have been estimated too. Van den Hout and Matthews (2008) 

estimate a multistate model in which the age dependence of transition rates is 

described by a Weibull model and Van den Hout et al. (forthcoming) use a Gompertz 

model. In demography, a variety of models are specified to describe age profiles of 

transition rates in multistate models. For an overview of models, see Rogers (1986). 

In biostatistics, the full parametric approach is relatively new, mainly because (1) the 

reliance on the semi-parametric Cox model with unrestricted baseline hazard and (2) 

the choice of time scale is usually not age, but time since start of the study. Interest in 

age increased since Korn et al. (1997) recommended using in proportional hazard 

models age rather than time-on-study. 

 

In the counting process approach, the likelihood function is written in terms of the 

counting process kNij(t) and the intensity process kij(t), where t represents age. The 

intensity process at age t is . The indicator function kYi(t) is 1 if 

individual k is in under observation and in state i at t and 0 otherwise. The total 

occupation time in state i is , with  the highest age. If individuals 

are independent, the intensity process at t is  and  is the 

number of (i,j)-transitions between t and t+dt, given the instantaneous transition rate 

ant the exposure function. If in addition all individuals have the same hazard rate, i.e. 

for all k, then the survival times are independent and identically 
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distributed. The aggregate intensity process may be written as: 

, where Yi(t) is the number of 

individuals under observation and in state i just before t. If the transition rate is 

constant, kij(t)= kij for all t and the intensity process at t is . If the 

transition rate is piecewise-constant during the age interval from x to x+1, kij(t)= 

kij(x) for x  t < x+1 and the intensity process at t is  for x  t < 

x+1. The intensity of leaving state i at time t, irrespective of destination, is 

, which may be written as , with 

.  

 

Let  denote the highest age in the study. A transition is observed if it occurs before 

. Individual k experiences kNij() occurrences of the (i,j)-transition from 0 to . In 

addition, the observation is censored in state i or in another state. Hence, the number 

of episodes of exposure is the number of transitions plus one. The contribution of 

individual k to the likelihood function is  

 

 

 

where  is the time at the n-th occurrence of the (i,j)-transition. Since the intensity 

depends on the instantaneous transition rate and exposure, the likelihood function is 

written in terms of the counting process kNij(t) and its intensity process kij(t)  (Aalen 

et al., 2008, p. 210). Notice that , with the at risk function 

equal to one if individual k is in state i just before the transition and 0 otherwise, and 

, with the at risk function equal to one if k is in i at . The last term 

is the probability of surviving in state i between the last entry time and censoring 

time. The intensity  depends on the instantaneous rate of leaving i and the at 

risk function, which is zero except for  larger than or equal to the time of the last 

transition and less than censoring time. In the traditional approach, integration is from 

the beginning of the period during which individual k is at risk of the (i,j)-transition to 

the end of that period. In the first term, the end is the time at the next occurrence; in 

the last term, it is the time at censoring. Hougaard (2000, p. 181) derives the 

likelihood function following the traditional approach: 

 

 

where  is one if the at risk period ends in an (i,j)-transition and zero if it ends 

because the observation is discontinued (censored). The counting process approach to 

the likelihood function is (Aalen et al., 2008, p. 2010): 

 

  

with kNij(t) the increment of kNij at time t.  

 

The full likelihood is 
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with i() the intensity process of the aggregated process Ni(t).  

 

The log-likelihood is . The 

maximum likelihood estimator of ij is the value of ij for which the score function is 

zero: . The score function is the first-order condition for  maximizing 

the likelihood that the model predicts the data. In the exponential model, 

 and the first term of the log-likelihood is    

. The second term is 

 , with Ri() the total exposure time in state i for all 

individuals in the (sample) population. The score function is 

. The solution to the equation  gives the 

maximum likelihood estimator of the transition rate: . The estimator 

is the observed number of transitions (occurrences) divided by the total duration at 

risk (exposure), which is an occurrence-exposure rate.  

 

In large samples, the estimator  is approximately normally distributed around the 

true value of ij, with the variance estimator . A better 

distribution for  is, however, if the logarithmic transformation is used. Only 10 

transitions are needed for  to be approximately normally distributed around 

 with variance estimator  (Aalen et al., 2008, p. 215).  

 

In general the cumulative transition rate under the exponential model (occurrence-

exposure rate), which increases linearly with duration, is a good approximation to the 

empirical cumulative transition rate (Nelson-Aalen estimator), which is a step 

function (Andersen and Keiding, 2002, p. 100). To improve the approximation, the 

time interval from 0 to  may be partitioned in subintervals and the occurrence-

exposure rate estimated for each subinterval. The exponential model turns into a 

piecewise exponential model with piecewise-constant transition rates. That is the 

common approach in demography, where age is the usual time scale with intervals of 

one year. The estimator of the transition rate and the variance, given above, are 

applied to each subinterval. Consider the aggregate counting processes Nij(t) and 

Yi(t), and subintervals from exact age x to exact age y (y not included). Age intervals 

are usually one year, but a more general interval is chosen here. The transition rate, 

which is constant in the interval is denoted by . The observed number of (i,j)-

transitions during the interval is  and the observed exposure time in state i is 

. Following Aalen et al. (2008, pp. 220ff), the score function is solved. The 
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score function is , where 

 and  with  an indicator 

function taking the value of one in the interval from x to y and a value of zero 

otherwise.  

 

The maximum likelihood estimator of the transition rate from i to j during the interval 

from x to y is the occurrence-exposure rate . Occurrence-

exposure rates are approximately independent and normally distributed around their 

true values, and the variance of  can be estimated by  or the 

logarithmic transformation . In demography, 

epidemiology and actuarial science, transition rates are usually occurrence-exposure 

rates and are determined by dividing occurrences by exposures. In the absence of 

exposure data, exposure is approximated by the product of the mid-period population 

and the length of the period, a method which Aalen et al. (2008, p. 222) also use.  

 

By way of illustration of the method, aggregate transition rates and age-specific 

transition rates are estimated from the subsample of 210 individuals, who enter 

observation at labour market entry. The analysis focuses on transitions between job 

episodes and episodes without a job. Transitions between jobs are omitted. Biograph 

and some additional calculations produced the main results reported in this section. 

The results are compared to those generated by the msm package for multistate 

modelling. The 210 individuals experience 504 episodes (323 job episodes and 181 

episodes without a job). The total observation time between first job entry and survey 

is 4,668 person-years (3,397 person-years in J and 1,271 person-years in N). They 

experienced 303 transitions during the observation period (181 JN transitions and 122 

NJ transitions). The JN transition rate is 181/3397 = 0.0533 per year and the NJ 

transition rate is 122/1271=0.0960 per year. To determine the 95 percent confidence 

intervals of the occurrence-exposure rate, the log-transformation of the estimator is 

used: . The confidence interval around the JN transition 

rate is , which is (0.0461, 0.0617). The confidence 

interval around the NJ transition rate is , which is 

(0.0804, 0.1146). Bootstrapping, i.e. sampling the original 201 observations with 

replacement, with 100 bootstrap samples produces a JN transition rate of 0.0535 with 

confidence interval (0.0452, 0.0636) and a NJ transition rate of 0.0977 with 

confidence interval (0.0701, 0.1264). 500 bootstrap samples yield a JN transition rate 

of 0.0534 with confidence interval (0.0.0451, 0.0629) and a NJ transition rate of 

0.0973 with confidence interval (0.0729, 0.1254). Bootstrapping produces confidence 

intervals that are somewhat larger than the analytical method.  

 

The package msm produces the same estimates and confidence intervals. The code is: 

 
d <- Remove.intrastate(GLHS) 

dd <- ChangeObservationWindow.e       
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   (Bdata=d,entrystate="J",exitstate=NA) 

data <- date_b (Bdata=dd,format.in="CMC", 

   selectday=1,format.out="age", 

   covs=c("marriage","LMentry")) 

Dmsm <-  Biograph.msm(data)    

twoway2.q <- rbind(c(-0.025, 0.025),c(0.2,-0.2))  

crudeinits.msm(state ~ date, ID, data=Dmsm,     

   qmatrix=twoway2.q)  

GLHS.msm.y <- msm( state ~ date,  

   subject=ID,  

   data = Dmsm, 

   use.deriv=TRUE, 

   exacttimes=TRUE, 

   qmatrix = twoway2.q,  

   obstype=2, 

   control=list(trace=2,REPORT=1, 

     abstol=0.0000005), 

   method="BFGS") 

 

The first line removes transitions between jobs. The second line changes the 

observation window: observation starts at labour market entry (first job) and ends at 

interview. The third line converts dates in CMC into ages. The fourth line converts 

the Biograph object data to the long format required by the msm package. The fifth 

and sixth lines generate initial values for transition rates. The next line calls the msm 

function for estimating the transition rates.  Object GLHS.msm.y contains the 

estimates and the 95% confidence intervals, with the row variable denoting origin 

and the column variable destination. State 1 is J and state 2 is N. 

 
                     State 1                      State 2                     

State 1 -0.05328 (-0.06164,-0.04606) 0.05328 (0.04606,0.06164)   

State 2 0.09602 (0.08041,0.1147)     -0.09602 (-0.1147,-0.08041) 

 

The msm package includes a function (boot) that uses bootstrapping to produce 

estimates, standard errors and confidence intervals. Bootstrapping, with 100 bootstrap 

samples, produces the following estimates and confidence intervals: 0.0504 for the JN 

transition rate, with 95% confidence interval (0.0435, 0.0584), and 0.0909 for the NJ 

transition rate, with 95% confidence interval (0.0760, 0.1088).   

 

Consider the piecewise constant exponential model with age intervals of one year. 

The input data are transition counts (occurrences) and exposures by single year of age 

recorded by single years of age for the 201 respondents. Transition counts and 

exposure times are shown in Table 2.3. JN is the number of transitions from J to N 

and PY is the exposure time. The table also shows the state occupancies at birthdays 

(Occup) and the number of observations censured by age (cens). The estimate of the 

transition rate is r.est and the 95% confidence interval is (r.L95, r.U95). The estimate 

and the confidence interval are obtained using the analytical method. Bootstrapping 

produces the estimate b.est and the confidence interval (b.L95, b.U95). The 

cumulative transition rate is cumrate. Consider age 30. Of the 201 individuals, 136 

have a job on their 30
th

 birthday and 59 are without a job. For 25 individuals, the 

information is missing. They did not reach age 30 yet when observation ended at time 

of interview (19 were employed and 6 were without a job). Together the individuals 

spend 127.75 years in state J and 56.58 years in state N between the 30
th

 and 31
st
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birthdays.  Notice that an individual in state J on his 30
th

  birthday may spend some 

time in state N before reaching age 31. At age 30, 2 individuals experience a JN 

transition and 3 a NJ transition. At that age, the JN transition rate is 2/127.75=0.0157 

and the NJ transition rate is 3/60.25=0.0530. In Table 2.3, r.est denotes the 

estimator of the transition rate. The confidence interval around the JN transition rate 

at age 30 is , which is (0.0039, 0.0626). The confidence 

around the NJ transition rate at age 30 is , which is 

(0.0171,0.1644). In the table, r.L95 denotes the lower bound and r.U95 the upper 

bound. The table also shows estimated transition rates (b.est) and confidence 

intervals (b.L95 and b.U95) obtained by bootstrapping with 100 bootstrap samples. 

The bootstrap standard errors are generally larger than the asymptotic standard errors, 

but it is not always the case in the table because of the relatively small number of 

bootstrap samples.  

 

The cumulative JN transition rate at age 30 is 1.3455 and the cumulative NJ transition 

rate is 3.2957.  

 

Table 2.3 Piecewise-constant exponential model: occurrences, exposures and 

transition rates. GLHS, 210 respondents. 
State J 

   Occup     PY JN cens  r.L95  r.est  r.U95  b.L95  b.est  b.U95 cumrate 

14     8  20.42  2    0 0.0245 0.0979 0.3916 0.0000 0.0932 0.2508  0.0000 

15    31  33.83  3    0 0.0286 0.0887 0.2750 0.0124 0.0916 0.2037  0.0979 

16    37  43.17  6    0 0.0624 0.1390 0.3094 0.0434 0.1454 0.2893  0.1866 

17    60  78.25  1    0 0.0018 0.0128 0.0907 0.0000 0.0142 0.0478  0.3256 

18    97 111.67  9    0 0.0419 0.0806 0.1549 0.0321 0.0732 0.1335  0.3384 

19   125 137.83 11    0 0.0442 0.0798 0.1441 0.0370 0.0822 0.1277  0.4190 

20   144 138.17 24    0 0.1164 0.1737 0.2592 0.1154 0.1750 0.2422  0.4988 

21   138 143.42 17    0 0.0737 0.1185 0.1907 0.0691 0.1185 0.1663  0.6725 

22   147 150.17  9    0 0.0312 0.0599 0.1152 0.0194 0.0565 0.1004  0.7910 

23   152 151.33 10    0 0.0356 0.0661 0.1228 0.0221 0.0662 0.1180  0.8510 

24   151 145.00 15    0 0.0624 0.1034 0.1716 0.0610 0.1057 0.1522  0.9170 

25   142 139.00 11    0 0.0438 0.0791 0.1429 0.0418 0.0749 0.1168  1.0205 

26   136 134.25 14    0 0.0618 0.1043 0.1761 0.0660 0.1088 0.1610  1.0996 

27   130 131.58  6    0 0.0205 0.0456 0.1015 0.0148 0.0484 0.0863  1.2039 

28   133 133.75  8    0 0.0299 0.0598 0.1196 0.0288 0.0610 0.1022  1.2495 

29   135 138.08  5    2 0.0151 0.0362 0.0870 0.0075 0.0350 0.0635  1.3093 

30   136 127.75  2   19 0.0039 0.0157 0.0626 0.0000 0.0159 0.0391  1.3455 

31   117 108.83  5   18 0.0191 0.0459 0.1104 0.0177 0.0488 0.0866  1.3612 

32   101  90.33  4   14 0.0166 0.0443 0.1180 0.0050 0.0461 0.0978  1.4071 

33    84  85.08  3    0 0.0114 0.0353 0.1093 0.0054 0.0375 0.0872  1.4514 

34    85  84.83  3    0 0.0114 0.0354 0.1097 0.0000 0.0359 0.0765  1.4867 

35    84  86.08  1    0 0.0016 0.0116 0.0825 0.0000 0.0121 0.0419  1.5220 

36    87  86.83  1    0 0.0016 0.0115 0.0818 0.0000 0.0096 0.0383  1.5337 

37    86  87.58  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.5452 

38    88  88.08  2    0 0.0057 0.0227 0.0908 0.0000 0.0253 0.0540  1.5452 

39    90  89.75  1    1 0.0016 0.0111 0.0791 0.0000 0.0111 0.0383  1.5679 

40    89  83.17  1   17 0.0017 0.0120 0.0854 0.0000 0.0115 0.0369  1.5790 

41    73  68.08  0   12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.5910 

42    61  57.17  2    8 0.0087 0.0350 0.1399 0.0000 0.0310 0.0816  1.5910 

43    53  53.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.6260 

44    53  52.00  2    0 0.0096 0.0385 0.1538 0.0000 0.0395 0.0894  1.6260 

45    52  52.33  1    0 0.0027 0.0191 0.1357 0.0000 0.0186 0.0731  1.6645 

46    52  52.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.6836 

47    52  52.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.6836 

48    52  52.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.6836 

49    52  51.92  0    1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.6836 

50    49  37.25  2   26 0.0134 0.0537 0.2147 0.0000 0.0537 0.1341  1.6836 

51    23  15.67  0   17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.7373 
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52     7   3.33  0    7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.7373 

53     0   0.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.7373 

 

State N  

   Occup    PY NJ cens  r.L95  r.est  r.U95  b.L95  b.est  b.U95 cumrate 

14     0  0.33  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000 

15     2  3.67  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000 

16     6  8.25  2    0 0.0606 0.2424 0.9693 0.0000 0.2712 0.6667  0.0000 

17     8  8.08  3    0 0.1197 0.3713 1.1512 0.0000 0.4016 0.8662  0.2424 

18     8  9.92  3    0 0.0975 0.3024 0.9377 0.0000 0.3119 0.8874  0.6137 

19    14 13.67 10    0 0.3936 0.7315 1.3596 0.4371 0.7533 1.1883  0.9161 

20    16 26.83  6    0 0.1005 0.2236 0.4978 0.0649 0.2084 0.3509  1.6477 

21    33 33.50 11    0 0.1818 0.3284 0.5929 0.1747 0.3282 0.5313  1.8713 

22    34 33.75  9    0 0.1387 0.2667 0.5125 0.1002 0.2704 0.4767  2.1996 

23    38 41.17  6    0 0.0655 0.1457 0.3244 0.0524 0.1448 0.2609  2.4663 

24    42 48.92  6    0 0.0551 0.1226 0.2730 0.0427 0.1227 0.2234  2.6121 

25    52 55.00  3    0 0.0176 0.0545 0.1691 0.0000 0.0540 0.1136  2.7347 

26    58 60.42  6    0 0.0446 0.0993 0.2210 0.0298 0.1003 0.2040  2.7892 

27    66 65.17  9    0 0.0719 0.1381 0.2654 0.0520 0.1383 0.2225  2.8886 

28    66 66.00  6    0 0.0408 0.0909 0.2024 0.0307 0.0924 0.1820  3.0267 

29    65 61.75 11    0 0.0987 0.1781 0.3217 0.0789 0.1776 0.2892  3.1176 

30    59 56.58  3    6 0.0171 0.0530 0.1644 0.0000 0.0507 0.1031  3.2957 

31    54 50.83  4    9 0.0295 0.0787 0.2097 0.0079 0.0827 0.1715  3.3487 

32    45 45.75  0    3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  3.4274 

33    46 44.92  5    0 0.0463 0.1113 0.2674 0.0418 0.1183 0.2233  3.4274 

34    45 45.17  1    0 0.0031 0.0221 0.1572 0.0000 0.0254 0.0723  3.5387 

35    46 43.92  4    0 0.0342 0.0911 0.2427 0.0204 0.0944 0.2221  3.5609 

36    43 43.17  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  3.6519 

37    44 42.42  2    0 0.0118 0.0471 0.1885 0.0000 0.0425 0.1169  3.6519 

38    42 41.92  4    0 0.0358 0.0954 0.2542 0.0225 0.0985 0.1932  3.6991 

39    40 40.17  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  3.7945 

40    40 36.25  4    5 0.0414 0.1103 0.2940 0.0259 0.1238 0.2564  3.7945 

41    33 30.50  0    5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  3.9048 

42    27 24.50  1    7 0.0057 0.0408 0.2898 0.0000 0.0386 0.1384  3.9048 

43    22 22.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  3.9457 

44    22 23.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  3.9457 

45    23 22.67  2    0 0.0221 0.0882 0.3528 0.0000 0.0839 0.2398  3.9457 

46    23 23.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  4.0339 

47    23 23.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  4.0339 

48    23 23.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  4.0339 

49    23 22.92  0    1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  4.0339 

50    22 17.92  1   10 0.0079 0.0558 0.3962 0.0000 0.0588 0.2500  4.0339 

51    13  8.83  0    8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  4.0897 

52     5  2.00  0    5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  4.0897 

53     0  0.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  4.0897 

 

The state occupancies at birthday are produced by the Occup function of Biograph, 

the transitions by the Trans function, and the transition rates and cumulative rates by 

the Rates.ac function.  

 

Biograph tracks individual transitions and state occupancies (exposure times). The 

purpose is to show an individual’s contribution to transition counts and exposure 

times. Consider individual with ID 76. He is born in June 1951 and gets his first job in 

October 1969 at age 18. He leaves employment for a period without a job in April 

1970 at age 18. The job spell lasts from age 18.333 to age 18.833, implying an 

exposure time of 0.5 years. The jobless period ends in May 1972 when he gets a new 

job. The duration of the jobless period is 20.917-18.833 = 2.084 years, 0.1667 years 

before the 19
th

 birthday (19.000-18.8333), 1 year between the 19
th

 and 20
th

 birthdays, 

and 0.92 years after the 20
th

 birthday (20.917-20.000). In January 1976, he enters a 

second period without a job; it lasts until April 1976. The new employment period 

lasts until the interview in November 1981, when he is age 30.417. Table 2.4 shows 
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the states occupied at all birthdays between first job and survey date, and the exposure 

times by age. At exact age 18, the individual is not under observation yet (state -). He 

enters observation at age 18.333, when he gets his first job. Between the 18
th

 and 19
th

 

birthday, respondent with ID 76 spends 0.333 years before observation (in state -), 0.5 

years in J and 0.167 years in N. At age 30, he spends 0.417 years in J and 0.518 years 

in the state ‘censored’. The tracking of individual transitions and exposures is 

necessary for a correct estimation of transition rates and is a central aspect of the 

counting process approach. If  is an estimate of the rate of transition from i to j 

between exact ages x and x+1, then the contribution of the individual to the likelihood 

function is  if the individual experiences a transition between x 

and x+1, and  if he experiences no transition. The best estimate of 

 is the one that maximizes the likelihood function for all individuals combined.  

 

Table 2.4 State occupancies and state occupation times. Individual with ID 76.  
   - J N +     -     J     N     + 

18 1 0 0 0 0.333 0.500 0.167 0.000 

19 0 0 1 0 0.000 0.000 1.000 0.000 

20 0 0 1 0 0.000 0.083 0.917 0.000 

21 0 1 0 0 0.000 1.000 0.000 0.000 

22 0 1 0 0 0.000 1.000 0.000 0.000 

23 0 1 0 0 0.000 1.000 0.000 0.000 

24 0 1 0 0 0.000 0.750 0.250 0.000 

25 0 1 0 0 0.000 1.000 0.000 0.000 

26 0 1 0 0 0.000 1.000 0.000 0.000 

27 0 1 0 0 0.000 1.000 0.000 0.000 

28 0 1 0 0 0.000 1.000 0.000 0.000 

29 0 1 0 0 0.000 1.000 0.000 0.000 

30 0 1 0 0 0.000 0.417 0.000 0.583 

31 0 0 0 1 0.000 0.000 0.000 1.000 

 

3. Transition probabilities and state occupation probabilities 

 

In multistate modelling, distinct types of probabilities have been identified (see e.g. 

Schoen, 1988, pp. 81ff). Survival probabilities, transition probabilities, and state 

occupation probabilities are well-known. They relate to the state occupied at a given 

age or at given ages. An event probability is the probability that a given transition 

occurs at least once during a given period. If the destination state is an absorbing 

state, e.g. dead, the transition probability and the event probability are the same. 

Otherwise they differ. The probability types are discussed in some detail. Age is 

denoted by x and y. State and transition probabilities will be denoted by p and event 

probabilities by . The matrix of transition probabilities between ages x and y is 

P(x,y) and the vector of state probabilities at x is p(x). The probability of a continuous 

stay in a state between ages x and y will be denoted by S(x,y). It is the survival 

probability in the state; it is the probability of non-occurrence of an event (exit from 

the state).   

 

The survival probability at age x is the probability of being alive at that age. In some 

fields, such as demography, dead is usually not a separate state in the state space. It is 

an absorbing state that is integrated in the diagonal of the transition matrix. The 

probability of being alive is the probability of being in any of the states of the state 
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space. In medical statistics, the absorbing state of dead is usually a separate state of 

the state space. In that case, the survival probability is the probability of being in a 

transient state. Unless specified otherwise, the state occupation probability at age x is 

the probability of occupying a given state at age x, conditional on being in any of the 

states of the state space at x, i.e. conditional on still being part of the population. The 

transition probability is the probability of occupying a given state at age y, conditional 

on occupying a given state at age x with y  x. All probabilities are derived from 

transition rates. Before deriving probabilities from rates, probability types are 

discussed in some depth. Probabilities are defined for periods. A period may be 

delineated by two ages, two transitions or by an age and a transition. The delineation 

results in periods of fixed or variable length. Probabilities may be conditional on 

being in a given state or having experienced a transition.  

 

Probabilities are computed at a reference age. The reference age indicates the position 

of the observer in the life course. The reference age is particularly relevant in the 

presence of mortality or when the probability is conditional on the state occupied at 

the reference age. For instance, the probability of experiencing a period without a job 

between ages 30 and 40 is likely to differ between persons employed at age 30 and 

persons employed at age 25. At age 30, the latter category may have a job or may be 

without a job. The difference is due to competing events between ages 25 and 30. In 

medical statistics, the reference age x from which a transition probability is estimated 

is known as the landmark time point and the method to select a range of reference 

ages as the landmark method. Individuals who experience the transition of interest 

before the landmark time point or who leave the population at risk for another reason 

(e.g. censoring) are removed from the data (Van Houwelingen and Putter, 2008; 

Beyersmann et al., 2012, p. 187). The landmark method is used for dynamic 

prediction (van Houwelingen and Putter, 2011). The central idea of dynamic 

prediction is that, by increasing the reference age, time-varying covariates may be 

updated with more recent values and predictions adjusted. 

 

If a period is delineated by two ages, the first age is denoted by x and the second by y 

(y > x). The probability of a transition, an event or a continuous stay in a given state 

between ages x and y depends on competing events before and during the period. To 

exclude the effect of competing events before x, the probability is computed at age x. 

If the impact of competing events before x need to be accounted for, the probability is 

computed at an age lower than x. For instance the probability of impairment after age 

65 depends on the likelihood of surviving to 65. It is higher if computed at 65 than at 

age zero. Probabilities are computed for individual k, but the reference to k is omitted 

for convenience.  

 

The probability that an individual who is in state i on his x-th birthday, will be in state 

j at age y is the transition probability . It may be written as 

, where  is a random variable denoting the state 

occupied at age x. The transition probability depends on the life history. If the life 

history is represented by , that dependence is denoted by 

. That dependence is omitted in this section on the 

derivation of probabilities. If the dependence on the past is omitted, the multistate 

process is a Markov process. A stochastic process  is a Markov process 

if the future is independent of the past, given the present. The time scale is continuous 
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(t is a continuous variable). The process is time-homogeneous if the transition 

probability  only depends on the age difference y-x and not on age x. In life-

history data analysis with age as the time scale, the process is time-inhomogeneous. 

Age matters. Transition probabilities are defined for the age interval from x to y. The 

probabilities are combined in a matrix of transition probabilities: 

 

 

 

 

 

 

 

 

 

where  is the probability that an individual who is in state i at age x will also 

be in state i at age y. Between x and y, the individual may move out of i and return 

later but before y. The reason for using matrices is that, except for a few simple cases, 

transition probabilities depend on all transition intensities and that requires systems of 

equations, which are conveniently written as matrix equations.  

 

The interval from x to y may be partitioned into P smaller intervals: x = x0 < x1 < x2 . . 

. . < xP = y. The transition probability matrix P(x,y) may be written as a matrix 

product: 

 
 

 

The equation is the Chapman-Kolmogorov equation for the Markov process. If the 

number of time points increases and the distance between them goes to zero in a 

uniform way, the matrix product approaches a limit termed a (matrix-valued) product-

integral. The product integral is a counterpart of the usual integral in classical 

calculus.  

 

State occupation probabilities at age y are derived from transition probabilities P(x,y) 

and state probabilities at age x. Let p(x) denote the vector of state probabilities at 

exact age x. The state probabilities at age y is P(x,y) p(x).  

 

To show the link between transition probability and (cumulative) transition rate, 

consider the infinitesimally small interval from  to +d with x   < y. The 

transition probability may be expressed in terms of increments of cumulative 

transition rates. The cumulative transition rates at time  may be arranged in a matrix: 
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An element  denotes the cumulative rate at time  of the transition from i to j. 

The diagonal element  is the cumulative rate at time  of leaving i: 

. The cumulative transition rate can be a step function, with a 

jump each time a transition occurs, or a continuous function. The increment of  

during the interval from  to +d is . The probability that the individual who 

is in i at  will be in j at +d is . The probability that an 

individual who is in i at  will be in i at  + d is 

. The matrix of transition 

probabilities between ages x and y, expressed in terms of the transition probabilities 

in small subintervals, is: 

 

 

The equation is the solution to the Chapman-Kolmogorov equation. No assumption is 

made on the nature of the distribution of the transition probability (Aalen et al., 2008, 

p. 470). The distribution can be discrete or continuous. The product integral is a 

restatement of the Chapman-Kolmogorov equation.  

 

If transition rates are continuous functions of age, then  and 

. The quantity  is the probability that an individual who is in 

i at  will move to j during the interval of length d: . Since the 

interval is sufficiently small to ensure not more than one transition, a move from i to j 

implies that the individual will be in j at +d. The probability of remaining in i 

during the interval of length d is . The matrix 

expression linking the matrix of transition probabilities during the interval from  to 

+d to the matrix of instantaneous transition rates is: 

, where I is the identity matrix and 

 

 

 

 

  

 

 

 

 

 

with . If the instantaneous transition rates are continuous functions 

of age, . 

 

In the literature, the instantaneous transition rate matrix has different configurations. 

The configuration used in this paper; is common in demography. The first subscript 

denotes the origin and the second the destination. In statistics, the off-diagonal 

element is the transition rate instead of minus the transition rate, and the matrix is the 
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transpose of the matrix shown here. The reasons for choosing the configuration 

become clear later.  

 

If the transition probability is a continuous function of age, a system of differential 

equations links transition probabilities and transition rates. The differential equations 

are derived from the Chapman-Kolmogorov equation. Recall that we may write 

 
 

 

Subtraction of P(,y) from both sides of the equation and dividing by -x yields 

 

 

 

and  

 

 

 

Since , we obtain the differential equation  

 

.  

 

The differential equation describes continuous-time non-homogeneous Markov 

processes. In physics the equation is known as the master equation. In the social 

sciences, the master equation is less well-known but some important applications 

(under that name) exist (see e.g. Weidlich and Haag, 1983, 1988; Aoki, 1996; 

Helbing, 2010). Aoki summarizes the significance of the master equation as follows: 

“The master equations describe time evolution of probabilities of states of dynamic 

processes in terms of probability transition rates and state occupancy probabilities” 

(Aoki, 1996, p. 116).  

 

To solve the matrix differential equation, we may try to generalize the solution of the 

scalar differential equation . The solution, given the interval 

from x to y, is  ,with p(x,y) the probability that an 

individual who is alive at age x will be alive at age y and () the instantaneous death 

rate at age . The generalization  does usually not work, 

however. It works only if the matrices of instantaneous transition rates commute, i.e. 

if the matrix multiplication  for all .  

 

To solve the system of differential equations, it is replaced by a system of integral 

equations: 
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This equation is essentially a system of flow equations of the multistate model. The 

element  of  is: 

 

 

 

 

 

 represents the number of moves or direct transitions from state j to state q 

between the ages x and y by an individual in state i at exact age x. The sum is the 

number of exits from state j by persons in i at x. The last term is the number of entries 

into state j by persons in i at x. 

 

To derive an expression involving transition rates during the interval from x to y, we 

write 

 

 

  

 

where m(x,y) is the matrix of transition rates. An elements mij(x,y) (ji) is the average 

transition rates during the interval from x to y and the diagonal element is the rate of 

leaving i:  .  Schoen (1988, p. 66) shows the same matrix 

equation and points to the link with the flow equations commonly used in 

demography.   

 

Transition probabilities serve as input in the computation of state occupation 

probabilities. Let pi(y) denote the probability that an individual who is alive at age y is 

in state i at that age and let p(y) denote the vector of state occupation probabilities at 

age y. The state probabilities at age y depend on state probabilities at an earlier age 

and transition probabilities, e.g. . This equation may be applied 

recursively to determine state occupancies at consecutive ages. Consider age intervals 

of one year. If the state occupation probabilities at birth are given and the transition 

probabilities  are known for 0  x < z-1, with z the start of the highest, 

open-ended age group, then a recursive application of  with 

0  x < z-1 produces state occupation probabilities by single years of age from birth to 

the highest age.  

 

The estimation of transition probabilities from data relies on the Nelson-Aalen 

estimator if the waiting-time distribution of a transition is not constrained and on the 

occurrence-exposure rate if the waiting-time distribution is (piecewise) exponential. 

Some packages for multistate modelling, e.g. etm and mstate, adopt the non-

parametric method assuming that the multistate survival function is a step function 

and estimate the empirical transition matrix, while other packages, e.g. msm and 

Biograph, adopt the parametric method assuming that the underlying multistate 

process is continuous but transition rates are (piecewise) constant.  
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a. Non-parametric method 

 

A logical estimator of P(x,y) is . Since the estimator  

is a matrix of step functions with a finite number of increments in the (x,y)-interval, 

the product-integral is the finite matrix product 

 

 

 

The matrix  is the empirical transition matrix, often denoted as the Aalen-

Johansen estimator. It is a non-parametric estimator, which generalizes the Kaplan-

Meier estimator to Markov chains (Aalen et al., 2008, p. 122). The diagonal element 

is generally not equal to the Kaplan-Meier estimator. The i-th diagonal element is the 

probability that an individual who is in i at age x will also be in i at age y. The state 

may be left and re-entered during the interval. The Kaplan-Meier estimator is an 

estimator of the probability that an individual who is in i at age x will remain in i at 

least until age y. The state may not be left during the interval. The Kaplan-Meier 

estimator is . 

 

For the covariance of the empirical transition matrix, see Aalen et al. (2008). 

 

Consider the selection of the GLHS data on 10 individuals. The Aalen-Johansen 

estimator of the transition probabilities are derived from the Nelson-Aalen estimator 

of the cumulative transition rates shown in Table 2.2. Consider the transition 

probability between ages 14 and 18.833. At age 14, individual 8 (ID=180) enters his 

first job and enters observation. He leaves the first job at age 15.667 (se Table 2.1). At 

that time, individual 2 (ID=67) had entered observation (at age 15,167). The empirical 

probability of transition from J to N between ages 14 and 15.667 after the job exit is 

(1-1/2)=0.5. The probability that the individual is without a job at age 18.833 is 28.57 

percent. It is computed by the matrix multiplication:  

 

 

 

 

 

Table 2.5 shows the results. The column etm.est gives the probability of an 

occurrence before t and etm.var gives the variance. The probability of no 

occurrence is surv. It is the empirical survival function or Kaplan-Meier estimator of 

the survival function. Both the Nelson-Aalen estimator and the Kaplan-Meier 

estimator are discrete distributions with their probability mass concentrated at the 

observed event times. The link between the cumulative hazard estimator and the 

Kaplan-Meier estimator relies on the approximation of the product integral. The 

product integration is the key to understanding the relation between the Nelson-Aalen 

and the Kaplan-Meier estimators (Aalen et al., 2008, p. 99 and p. 458). The column 

delta shows the increments of the cumulative hazard. The probability that an 
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individual who is in state J at age 14 will be in state N at age 25 is 43.27 percent. The 

estimate is based on all transitions before age 25, the last one at age 24.833. The 

probability of being in J at age 25 is the same as the probability of being in J at age 

24.833, since in the sample population no transition occurred between ages 24.833 

and 25. Recall that the elements of the empirical transition matrix are step functions 

with constant values between transition times. The probability that a 20-year old 

individual who is in state J will be in N at age 25 is 41.52 percent.  

 

The etm function of the etm package computes the Aalen-Johansen estimator of the 

transition probability matrix of any multistate model. The entries of the Aalen-

Johansen estimator, which is a matrix, are empirical probabilities. The etm package is 

used to produce the results shown in Table 2.5. The results are for a selection of the 

10 respondents used for illustration of the Nelson-Aalen estimator. The code is: 

 
library (etm) 

D<- Biograph.mvna (d.10) 

tra <- matrix(ncol=2,nrow=2,FALSE) 

tra[1, 2] <- TRUE 

tra[2,1] <- TRUE 

etm.0 <- etm(data=D$D,c("J","N"),tra,"cens",s=0) 

 

The covariance matrix of the empirical transition matrix is derived using martingale 

theory (Aalen et al., 2008, pp. 124ff). The Aalen-Johansen estimator along with event 

counts, risk set, variance of the estimator and confidence intervals can be obtained 

through the summary function of the etm package: 

 
summary(etm.0)$"J N" 

summary(etm.0)$"N J" 

 

The confidence interval is computed without transformation of the data. 

Transformations can be specified, however (see Beyersmann et al., 2012, p. 185).  

 

Respondents enter observation when they start their first job and the employment 

status varies with age. The probability of being employed at the highest age in the 

sample population (53) depends on the employment status at lower ages. An 

individual with a job at age 18 has a 37 percent chance of also having a job at age 53. 

An individual with a job at age 30 has a 42 percent chance of having a job at age 53. 

Because employment status varies with age the probability of being in a given state at 

a given higher age varies with age too. By varying the reference age, the changes in 

probabilities can be assessed. The method selecting a range of reference ages is the 

basic idea of the landmark method. In this example, the end state is a transient state. 

In the landmark method, the end state is an absorbing state. In multistate life-table 

analysis, the method of selecting different reference ages and to estimate transition 

probabilities conditional on states occupied at a reference age is known as the status-

based life table (Willekens, 1987). 
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Table 2.5 Aalen-Johansen estimator of transition probabilities. GLHS subsample of 

10 individuals. 
JN transition 

        age nrisk nevent   etm.est     etm.var      surv 

1  14.00000     1      0 0.0000000 0.000000000 1.0000000 

2  15.16667     1      0 0.0000000 0.000000000 1.0000000 

3  15.66667     2      1 0.5000000 0.125000000 0.5000000 

4  17.00000     1      0 0.5000000 0.125000000 0.5000000 

5  17.83333     2      0 0.5000000 0.125000000 0.5000000 

6  18.16667     3      0 0.5000000 0.125000000 0.5000000 

7  18.33333     4      0 0.5000000 0.125000000 0.5000000 

8  18.66667     6      0 0.0000000 0.000000000 1.0000000 

9  18.75000     7      1 0.1428571 0.017492711 0.8571429 

10 18.83333     6      1 0.2857143 0.029154519 0.7142857 

11 19.16667     5      0 0.2857143 0.029154519 0.7142857 

12 19.41667     6      1 0.4047619 0.032056473 0.5952381 

13 19.66667     5      0 0.4047619 0.032056473 0.5952381 

14 20.91667     6      1 0.3690476 0.028351420 0.6309524 

15 21.00000     6      1 0.4742063 0.028903785 0.5257937 

16 21.16667     5      0 0.3556548 0.026799238 0.6443452 

17 21.50000     6      0 0.2371032 0.021280425 0.7628968 

18 22.41667     7      0 0.1185516 0.012347346 0.8814484 

19 22.58333     8      1 0.2287326 0.020075818 0.7712674 

20 23.16667     7      2 0.4490947 0.027585427 0.5509053 

21 24.58333     6      1 0.5409123 0.026181931 0.4590877 

22 24.83333     5      0 0.4327298 0.026119191 0.5672702 

23 25.16667     6      0 0.3245474 0.023469628 0.6754526 

24 26.00000     7      1 0.4210406 0.025223801 0.5789594 

25 28.16667     6      0 0.3157805 0.022498163 0.6842195 

26 29.75000     7      0 0.2105203 0.017385650 0.7894797 

27 30.41667     8      0 0.2105203 0.017385650 0.7894797 

28 30.66667     6      0 0.1052602 0.009886262 0.8947398 

29 31.08333     7      0 0.1052602 0.009886262 0.8947398 

30 40.25000     6      1 0.2543835 0.025396927 0.7456165 

31 41.25000     5      0 0.2543835 0.025396927 0.7456165 

32 41.50000     4      0 0.2543835 0.025396927 0.7456165 

33 41.91667     3      0 0.2543835 0.025396927 0.7456165 

34 42.75000     3      0 0.2543835 0.025396927 0.7456165 

35 44.66667     2      1 0.6271917 0.075842235 0.3728083 

36 52.16667     1      0 0.6271917 0.075842235 0.3728083 

37 52.66667     1      0 0.6271917 0.075842235 0.3728083 

 

NJ transition 

        age nrisk nevent   etm.est     etm.var      surv 

1  14.00000     0      0 0.0000000 0.000000000 1.0000000 

2  15.16667     0      0 0.0000000 0.000000000 1.0000000 

3  15.66667     0      0 0.0000000 0.000000000 1.0000000 

4  17.00000     1      0 0.0000000 0.000000000 1.0000000 

5  17.83333     1      0 0.0000000 0.000000000 1.0000000 

6  18.16667     1      0 0.0000000 0.000000000 1.0000000 

7  18.33333     1      0 0.0000000 0.000000000 1.0000000 

8  18.66667     1      1 1.0000000 0.000000000 0.0000000 

9  18.75000     0      0 0.8571429 0.017492711 0.1428571 

10 18.83333     1      0 0.7142857 0.029154519 0.2857143 
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11 19.16667     2      0 0.7142857 0.029154519 0.2857143 

12 19.41667     2      0 0.5952381 0.032056473 0.4047619 

13 19.66667     3      0 0.5952381 0.032056473 0.4047619 

14 20.91667     3      1 0.6309524 0.028351420 0.3690476 

15 21.00000     3      0 0.5257937 0.028903785 0.4742063 

16 21.16667     4      1 0.6443452 0.026799238 0.3556548 

17 21.50000     3      1 0.7628968 0.021280425 0.2371032 

18 22.41667     2      1 0.8814484 0.012347346 0.1185516 

19 22.58333     1      0 0.7712674 0.020075818 0.2287326 

20 23.16667     2      0 0.5509053 0.027585427 0.4490947 

21 24.58333     4      0 0.4590877 0.026181931 0.5409123 

22 24.83333     5      1 0.5672702 0.026119191 0.4327298 

23 25.16667     4      1 0.6754526 0.023469628 0.3245474 

24 26.00000     3      0 0.5789594 0.025223801 0.4210406 

25 28.16667     4      1 0.6842195 0.022498163 0.3157805 

26 29.75000     3      1 0.7894797 0.017385650 0.2105203 

27 30.41667     2      0 0.7894797 0.017385650 0.2105203 

28 30.66667     2      1 0.8947398 0.009886262 0.1052602 

29 31.08333     1      0 0.8947398 0.009886262 0.1052602 

30 40.25000     1      0 0.7456165 0.025396927 0.2543835 

31 41.25000     2      0 0.7456165 0.025396927 0.2543835 

32 41.50000     2      0 0.7456165 0.025396927 0.2543835 

33 41.91667     1      0 0.7456165 0.025396927 0.2543835 

34 42.75000     0      0 0.7456165 0.025396927 0.2543835 

35 44.66667     0      0 0.3728083 0.075842235 0.6271917 

36 52.16667     1      0 0.3728083 0.075842235 0.6271917 

37 52.66667     0      0 0.3728083 0.075842235 0.6271917 

 

The following code computes the Aalen-Johansen estimators of the transition 

probabilities for reference ages 18, 25, 30 and 35 (see Beyersmann et al., 2012, p. 

187): 

 
age. points <- c(18,25,30,35) 

landmark.etm <- lapply (age.points,  

  function (reference.age) 

   {etm(data=D$D, 

   state.names=c("J","N"), 

   tra=tra,"cens", 

   s=reference.age) }) 

 

 

The landmark method is also implemented in the dynpred package (Putter, 2012). It is 

the companion package of Van Houwelingen and Putter (2011).  

 

State occupation probabilities are derived from transition probabilities. Because all 

individuals are initially in J, the probabilities of being in state N is the transition 

probability JN with the youngest age as reference age (compare with Beyersmann et 

al., 2012, p. 190). In the subsample of 10 individuals, the probability of occupying 

state J at age 30 is 78.95 percent and the probability of being in N is 21.05 percent 

(Table 2.5).  The 95 percent confidence intervals are (0.531, 1.000) 

( ) and (0.000, 0.469) ( ), respectively. The 

following code produces these results: 
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 dd=Biograph.mvna(d.10) 

etm(data=dd$D,c("J","N"),tra,"cens",s=0) 

summary(etm.0)$"J N"[26, c("P","lower","upper")] 

summary(etm.0)$"N J"[26, c("P","lower","upper")] 

 

where dd is the data for the 10 selected individuals (Biograph object) and 26 is the 

age index associated with the age at the last transition before 30 (age 29.75).  

 

Consider now the subsample of 201 respondents. Of the 201 respondents, 160 enter 

the labour market (first job) before age 20. At age 20, 146 are in state J and 14 in state 

N. The state probabilities at age 20 are produced by the code: 

 
etm.0 <- etm(data=D$D,c("J","N"),tra,"cens",s=0,t=20) 

 

The states occupied at exact age 30 are obtained from the state probabilities at age 20 

and the empirical transition probabilities between ages 20 and 30,  

 

  

 

The following code produces the transition matrix  
etm.20_30 <- 

etm(data=D$D,c("J","N"),tra,"cens",s=20,t=30) 

 

The product of and  is: 

 
t(etm.20_30$est[,,99])%*% 

t(etm.0$est[,,dim(etm.0$est)[3]])[,1] 

 

The state occupation probabilities at age 30, can be obtained by the code:   

  
 etm(data=D$D,c("J","N"),tra,"cens",s=0,t=30) 

 

Of the 160 individuals who enter the labour market by age 20, 109 are employed at 

age 30 and 51 are without a job. Table 2.6 shows the state probabilities at selected 

ages. The table shows the probabilities of occupying state J (J_est) and state N 

(N_est) at selected ages, and the 95 percent confidence intervals (J_lower, J_upper) 

and (N_lower, N_upper). The confidence intervals are computed by the 

summary.etm function of the etm package. 

 

 

Table 2.6 Probabilities of being without a job at selected ages: non-parametric 

method. GLHS, 201 respondents.  
  age J_lower J_est J_upper N_lower N_est N_upper 

1  15   0.827 0.926   1.000   0.000 0.074   0.173 

2  20   0.786 0.856   0.926   0.074 0.144   0.214 

3  25   0.641 0.707   0.774   0.226 0.293   0.359 

4  30   0.618 0.684   0.749   0.251 0.316   0.382 

5  40   0.624 0.699   0.774   0.226 0.301   0.376 

6  50   0.600 0.688   0.775   0.225 0.312   0.400 
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b. Parametric method: piecewise exponential model 

 

If the instantaneous transition rates are constant the distribution of the waiting time to 

the next transition is exponential. Assume that the instantaneous transition rates are 

constant in the age interval from x to y:  for x   < y, with mij(x,y) 

the transition rate during the (x,y)-interval. The matrix of transition probabilities is 

. If transition rates are age-specific with age intervals of 

one year, then the transition probabilities between reference age x and age y is 

 
 

 

with .  

 

A number of methods exists to determine the value of exp[-m(x,y)]. I use the Taylor 

series expansion. Note that for matrix A, exp(A) may be written as a Taylor series 

expansion: 

 

. . . + 
3!

1
 + 

2!

1
 +  + = )exp
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Hence 

 

 

(see also Schoen, 1988, p. 72).  

 

The estimator of the transition matrix is:  with  

the matrix of empirical occurrence-exposure rates in the (x,y)-interval: 

, where Nij(x,y) is the observed number of moves from i to 

j during the interval and Ri(x,y) is the exposure time in i. Exposure is measured in 

person-months or person-years.  

 

In case of two states, the rate equation may be written as follows: 

 

 

 

where  and . In matrix notation: 

 

 

Consider the example with 201 respondents. The age-specific transition rates are 

shown in Table 2.3. The first state is J and the second N. The JN transition rate for 18-

year old individuals is 0.0806 and the NJ transition rate is 0.3024. They are obtained 

by dividing the number of transitions by the exposure time in each state between ages 

18 and 19. The one-year transition probability matrix is: 
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The probability that an individual in the sample population who on his 18
th

 birthday 

has a job, will be without a job on his 19
th

 birthday is 6.7 percent. The probability that 

an 18-year old without a job will be with a job one year later is 25.1 percent. 

Bootstrapping is used to generate confidence intervals. The mean transition 

probability produced by 100 bootstrap samples is 0.0665 for the JN transition, with 95 

percent confidence interval (0.0294, 0.1043) and 0.2583 for the NJ transition, with 95 

percent confidence interval (0.0000, 0.4611). The retention probabilities are 0.9335 

for J, with confidence interval (0.8957, 0.9706) and 0.7417 for N, with confidence 

interval (0.5389, 1.0000).  

 

The state occupation probabilities at age 30 is the product of the transition probability 

matrix  and the state probabilities . In the subsample, 86 percent is 

employed at age 20 and 14 percent is without a job (Table 2.6). The state probabilities 

at age 30 are: . It is 

equal to: 

 

. 

 

The 95 percent confidence intervals of the state occupation probabilities at age 30, 

obtained from 100 bootstrap samples, is (0.6173, 0.7556) for J and (0.2444, 0.3827) 

for N. The estimates and their confidence interval are close to the figures produced by 

the non-parametric method (Table 2.6).  

 

4. Expected waiting times and state occupation times 

 

State occupation times, also denoted as sojourn times and exposure times, are 

durations of stay in a state or stage during a given period. They indicate the lengths of 

episodes and are expressed in days, weeks, months or years if measured for a single 

individual or in person-days to person-years if measured for a population. Observed 

sojourn times are used to determine the exposure to the risk of an event. In this 

section we focus on expected sojourn times. The fundamental question is: given a set 

of transition rates, what is the expected sojourn time in a state? Questions on 

durations are omnipresent. What is the expected lifetime (life expectancy)? What is 

the health expectancy, i.e. how many years may a person expect to live healthy? What 

is the lifetime probability of disability and what is the expected age at disability for 

those who ever become disabled? What is the likelihood of a divorce and how many 

years, on average, are people married when they divorce? What is the expected 

duration of unemployment? What is the expected number of years of working life for 

persons who retire early? What these questions have in common is that they are about 

the length of periods between two reference points. The reference points may be 

events such as in the question on duration of marriage at divorce. Marriage and 

divorce are the two events. The reference point may be any point in time. When the 

second reference point is an event, the expected sojourn time is equivalent to the 

expected waiting time to the event.  
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Expected occupation times depend on transition rates between two reference ages. 

They also depend on the location of the observer. Suppose we want to know the 

number of years a person may expect to live with cardiovascular disease between ages 

60 and 80. It depends on the transition rates between ages 60 and 80, including rates 

of death from cardiovascular disease or other causes. It also depends on the reference 

age because the reference age introduces dependencies on intervening events. The 

expected number of years with the disease is larger for 60-year old individuals than 

for 0-year old children because the latter category may not reach age 60.  
 

The sojourn times spent in the different states between ages x and y by state occupied 

at age x is . The configuration of  is: 

 
 

 

 

 

 

 

The marginal state occupation times give the total expected sojourn time in the system 

by state occupied at age x (column total).  

 

The time spent in state j between ages x and y by an individual who is in state i at 

exact age x is 

 

 

 

and for all states of origin and states of destination:  

 

In the above formulation, the expected occupation time in state j is conditional on 

being in state i at age x. The occupation time is said to be status-based; it is estimated 

for individuals in a given state at the reference age x. The population-based 

occupation time is the expected occupation time in state j beyond age x, irrespective 

of the state occupied at age x. It is the sum of status-based occupation times between 

x and y, weighted by state probabilities at age x:  

 

, where  is the 

probability that an individual is in state i at age x.  

 

The expected state occupation times are derived from transition rates. Two 

approaches are considered: the non-parametric approach and the (piecewise-constant) 

exponential model.  

 

a. Non-parametric approach  

 

Beyersmann and Putter (2011) present a non-parametric method for estimating the 

expected state occupation time. Divide the period between age 0 and the highest age 



 37 

 in intervals. Intervals of one year are considered, but the method can be applied to 

intervals of any length. The intervals are from age x-1 to x, for 0  x < . The state 

occupation probability at age x is .  A natural estimate of the expected 

occupation time in i beyond age x, irrespective of the state occupied at age x, is  

 

 

 

The method assumes that an individual who is in state i at age x stays in i during the 

entire year preceding x and an individual who leaves i between x-1 and x leaves at the 

beginning of the interval (at x-1). The assumption can be relaxed by reducing the 

length of the interval or by making alternative assumptions about ages at entry and 

exit. A plausible assumption is that transitions take place in the middle of the interval. 

That assumption is valid if the interval is sufficiently short so that at most one 

transition occurs during the interval. Multiple transitions during an interval (tied 

transitions) require an assumption about the sequence of transitions. 

 

b. Parametric approach: exponential model 

 

A distinction is made between expected state occupation times between two ages 

(closed interval) and expected state occupation times beyond a given age (open 

interval). The reference age may be any age at or before the start of the interval. For 

instance, the expected number of years in good health beyond age 65 may be 

computed for persons aged 65 or for persons of an age below 65, e.g. at birth or at 

labour market entry. The expected state occupation time may be conditioned on the 

state occupied (and other characteristics) at the reference age or the first age of the 

closed or open interval. The expected state occupation time may also be conditioned 

on a future transition. Consider an employment career. The age at which a person may 

experience a first episode without work after a period with employment is lower for 

those who will ever experience an episode without work than for the average 

population. The expected occupation time during an age interval, conditioned on a 

transition occurring with certainty during that interval, is less than the expected 

occupation time that is not conditioned on a transition occurring. For instance, the 

expected duration of marriage at divorce is lower for those who divorce than for the 

average married population.  

 

The time spent in state j between ages x and y by an individual who is in state i at 

exact age x is , where an element  denotes the time 

an individual in i at age x may expect to spend in j between ages x and y. If the 

transition rates are constant in the (x,y)-age interval (exponential model), the 

integration of the equation leads to: 

 

, 

 

which is equal to: 

 

,  
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provided m(x,y) is not singular. The expression is also shown by Namboodiri and 

Suchindran (1987, p. 145), Schoen (1988, p. 101) and van Imhoff (1990). If m(x,y) is 

singular, a very small value may be added to the diagonal elements of the matrix. 

Izmirlian et al. (2000, p. 246), who consider the case with an absorbing state (death), 

suggest to replace by one the zero diagonal element corresponding to the absorbing 

state. I choose to add a small value (10
-8

) to the diagonal. It may be viewed as a rate 

of a fictitious attrition. It is too small to occur between x and y but it is large enough 

to make m(x,y) non-singular.  

 

Taylor series expansion of  results in the following equivalent 

expression for the state occupation times (Schoen, 1988, p. 73): 

 

 

When the interval is short, the sojourn time may be approximated by the linear 

integration hypothesis, which implies the assumption of uniform distribution of events 

(linear model): 
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The linear method is usually used in demography and actuarial science. It is often 

referred to as the actuarial method.  

 

The reference age may be any age at or before the start of the interval. Consider the 

reference age zero. The expected time newborns may expect to spend in each state 

between ages x and y, by state at birth, is  

 
      

 

where P(0,x) represents the transition probabilities between ages 0 and x. When the 

reference age changes from age 0 to age x, the expected length of stay in the various 

states between ages x and y changes from an unconditional measure to a conditional 

measure. It becomes conditional on being present in the population at x. The measure 

is 

 

, 

 

provided the inverse of P(0,x) exists. The state occupation times between ages x and 

y, a new-born may expect, irrespective of the state occupied at birth is .   

 

The estimation of the expected state occupation times beyond a given age requires the 

state occupation time beyond the highest age group. If at high ages few transitions 

occur, the ages are often collapsed in an open-ended age group with constant 

transition rates. Demographers use that approach to close the life table. Let z denote 

the first age of the highest open-ended age group. The sojourn time in the various 

states beyond age z by individuals present at z is 
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, where  denotes infinity.  

 

The life expectancy at age x is the number of years an individual aged x may expect 

to spend in each state beyond age x, by state occupied at x or irrespective of the state 

occupied at x. It is . An element  of  is the 

number of years an individual who is in state i at age x may expect to spend in state j 

beyond age x.  is a matrix with the state at age x as the column variable and 

the state occupied beyond age x the row variable. It gives the expected remaining 

lifetime conditional on the state occupied at age x. In multistate demography, it is 

known as the status-based life expectancy at age x. The population-based life 

expectancy is the time an individual aged x may expect to spend in each of the states 

beyond age x, irrespective of the state occupied at age x. It is  multiplied by 

the vector of state occupation probabilities at age x.  

 

If transition rates are age-specific, i.e. piecewise-constant, and the length of an age 

interval is one year, then the expected state occupation times at reference age x is 

 

 

 

with  and . 

 

The expected occupation time in state i depends on the rate of leaving i. If the exit 

rate between ages x and y is zero, an individual in i at age x will remain in i at least 

until age y. If a departure from i occurs during the (x,y)- interval, it will occur at an 

occupation time which is less than the expected occupation time. In other words, the 

expected occupation time, conditioned on a transition occurring, is less than the 

expected occupation time that is not conditioned on a transition occurring. Consider 

an individual in state i at age x. The expected waiting time to leaving i between x and 

y consists of two parts. The first is the state occupation time for stayers. It is equal to 

y – x. The probability of staying in i during the entire interval from x to y is the 

survival probability . The second part is the waiting time 

to an exit from i that occurs before y. It is denoted by . Hence the occupation 

time equation is  and 

. It is the time an individual aged x in i spends 

in i on a continuous basis before leaving, provided the exit occurs before y. The 

occupation time equation distinguishes stayers and leavers.  

 

The fraction of an interval spent in a given state if a transition occurs with certainty is 

frequently referred to as Chiang’s “a”, after the statistician Chiang who introduced it. 

Chiang, who developed the measure in the context of mortality, called “a” the fraction 

of the last year of life (Chiang, 1968, pp 190ff; 1984, pp. 142ff). Schoen (1988, p. 8 

and p. 71) uses the concept of mean duration at transfer to denote the expected 

number of years before the transition. It is the product of Chiang’s “a” (fraction of the 

interval) and the length of the interval. If events are uniformly distributed during the 

interval, the survival function is linear and “a” is half the length of the interval. If the 
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transition rate is constant during an interval, the waiting time to the event is 

exponentially distributed. Consequently, the expected time to an event that occurs 

with certainty is less than half the interval length. The probability that an exit from 

state i during the (x,y)-interval, occurs during the first half of the interval, provided it 

occurs with certainty during the interval, is a ratio of two distribution functions: 

. 

 

Consider the example and age 18. The expected occupation times in state J and N by 

state on the 18
th

 birthday is  

 

 

A person of exactly age 18 with employment may expect to spend 0.036 years (less 

than half a month) without employment before reaching age 19. The 95 percent 

confidence interval, produced by bootstrapping, is (0.0136, 0.0635). A person of the 

same age without a job may expect to be employed during 0.134 years (1.6 months) 

before his 19
th

 birthday, with confidence interval (0.0323, 0.2663). A small figure (10
-

8
) has been added to the diagonal to prevent m(18,19) from being singular. A person 

aged 18 with employment, who leaves employment before age 19, may expect to 

leave employment after  years or 5.6 months. The Taylor 

series expansion gives about the same result. A sum of four terms plus the identity 

matrix gives .  

 

The number of years between the lowest age (14) and the highest age (54) is 40 years. 

Since states J and N are transient states, the total numbers of years spent in the 

employment career between ages 14 and 54 is 40. If a hypothetical individual starts at 

age 14 with a job and the employment career is governed by the occurrence-exposure 

rates estimated from the GLHS subsample of 201 subjects, then the expected number 

of years with a job is 28.66 and the number of years without a job is 11.34. The 

average of the 100 bootstrap samples is 28.55 and 11.45, respectively. The 95 percent 

confidence intervals are (26.65, 30.28) and (9.72, 13.35).  

 

5. Synthetic life histories 

 

The methods presented in the previous sections produce state probabilities and 

expected occupation times that are consistent with empirical transition rates. The state 

probabilities and the occupation times describe the expected life history, given the 

data. The confidence intervals around the expected values indicate the degree of 

uncertainty in the data. Transition rates are differentiated by age to capture the age 

patterns of transitions. I will use transition rates that are age-specific, i.e. the rates 

vary between age groups of one year but they are constant within age groups 

(piecewise constant). Individual life histories differ from the expected life history 

because of observed differences between individuals, unobserved differences and 

chance. The chance mechanism is the subject of this section. Observed and 
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unobserved differences are disregarded because they are beyond the scope of this 

paper. Synthetic individual life histories are generated using longitudinal 

microsimulation (Willekens, 2009; Zinn, 2011). The method is consistent with 

Discrete Event Simulation (DEV) methods.  

 

To explain the chance mechanism, a single transition rate will do. Consider the 

aggregate NJ transition rate, which has been estimated at 0.096. An individual who 

previously had a job (the nature of the sample) and who is currently without a job, 

may expect to get another job in 10.4 years (1/0.096). The expected waiting time 

during the first year is  years. It is high because at the 

time the data were collected a relatively large number of respondents, in particular 

women, left the labour force and did not return. The probability of experiencing the 

event in the first year is 9.154 percent. An individual experiencing an occurrence in 

the first year, experiences it at 0.4920 years, on average, which is little less than 6 

months. Individual waiting times are random variables; the values are distributed 

around these expected value. Since the transition rate is constant at 0.096, individual 

waiting times are exponentially distributed with a mean of 10.4 years and a variance 

of 108 years, assuming no competing event intervenes in the labour market 

transitions. The median waiting time is 7.2 years [10.4*ln(2)]. To obtain individual 

waiting times that are consistent with these expected values, waiting times are drawn 

randomly from an exponential distribution with a hazard rate 0.096 or, alternatively, a 

mean waiting time of 10.4 years. A random draw is implemented in two steps. First, a 

random number is drawn from the standard uniform continuous distribution U[0,1]. 

Every value between zero and one is equally likely to occur. The random number 

drawn represents the probability that the waiting time to the transition is less then or 

equal to t, where t needs to be determined. Let  denote the probability. Hence: 

. Suppose =0.54. The value of t is derived from the inverse 

distribution function of the exponential distribution. It is  

 years. N draws from the uniform distribution result in N 

individual waiting times. If N is sufficiently large, the sample mean is close to the 

expected value of 10.4 years and the sample variance is close to 108 years. One 

experiment of 1000 draws resulted in a mean waiting time of 10.11 years and a 

variance of 116.5 years. Another experiment resulted in a mean waiting time of 9.89 

years and a variance of 87.4 years.  

 

A transition rate estimated from data is subject to sample variation. The rate is itself a 

random variable. If the number of observations is sufficiently large, the rate is a 

normally distributed random variable with the expected value as its mean. The 95 

percent confidence interval of the NJ transition rate was estimated at (0.0804, 

0.1146). To incorporate the degree of uncertainty in the data in the generation of 

synthetic life histories, a transition rate may be drawn from a normal distribution with 

mean ln(0.096) and standard deviation .  If the value drawn from a 

normal distribution is denoted by m, then the transition rate is exp(m). An alternative 

to drawing a transition rate from a normal distribution is to resample the data (with 

replacement) and to estimate the transition rate from the new sample. In this 

approach, the distribution of the transition rate is the distribution generated by 

bootstrap samples. Consider 100 bootstrap samples and 100 transition rates, one from 
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each sample. Each of these transition rates are used to generate 1000 individual 

waiting times. The collection of waiting time incorporates the effects of sample 

variation and the exponential distribution of waiting times. The overall average 

waiting time is 10.54 years and the variance is 115.00 years. The NJ transition rates 

estimated in the bootstrap samples vary from 0.073 to 0.140, with mean rate 0.0967. 

 

The aggregate transition rates may be used to generate employment histories. The JN 

transition rate is 0.0533 and the NJ transition rate is 0.0960. Recall that observations 

started at labour market entry (first job). Hence N refers to being without a job, after 

having had at least one job. The transition rate matrix is . 

Everyone starts the employment history in J.  The starting time is zero, meaning that 

the time is measured as time elapsed since labour market entry. The employment 

history is simulated for 30 years (simulation stop time). The transition rates are 

assumed to remain constant during that period. In this example, employment histories 

are sequences of transitions and waiting times to transitions. They are assumed to be 

outcomes of a continuous-time Markov model with constant rates. The simulation 

runs as follows. Let t denote time. An individual starts in J at time 0. A random 

number is drawn from an exponential distribution with transition rate 0.0533 to 

determine the time to transition from J to N. One draw results in a transition at t=8.29 

years. To determine how long the individual stays in N, a random number is drawn 

from an exponential distribution with transition rate 0.096. The randomly selected 

time to NJ transition is 4.30 years. Hence the individual starts a second job 12.59 

years after labour market entry (8.29+4.30). A new random waiting time is drawn 

from an exponential distribution with transition rate 0.0533 to determine the time of 

the second JN transition. The number is 24.00, which means that the transition would 

occur 36.59 years after labour market entry. The transition time exceeds the time 

horizon of 30 years and is not considered. When the simulation is discontinued, the 

individual is in state J. The function sim.msm of the msm package is used to 

generate the life history of a single individual. The code is: 

 
m <- array(c(0.0533,-0.0533,-0.096,0.096), 

  dim=c(2,2),dimnames=list(origin=c("J","N"), 

  destination=c("J","N"))) 

bio <- sim.msm (-m,mintime=0,maxtime=30,start=1) 

 

where m is the transition rate matrix shown above, mintime is the starting time of 

the simulation, maxtime is the ending time and start is the starting state (J is state 

1 and N is state 2). The object bio has two components. The first contains the state 

sequence and the second the transition times.  

 

The distribution of employment histories that are consistent with the transition rates 

may be obtained by simulating a large number of employment histories. In this simple 

illustration, the transition rates are assumed not to depend on age and to remain 

constant during the period of 30 years. Simulation of 1,000 employment histories 

results in the distribution shown in Table 2.7. The most frequent trajectory is JN, 

about one third of all trajectories. The trajectories JNJN and JNJ cover about one 

fourth each. These 3 trajectories account for 80 percent of all trajectories during a 

period of 30 years. For each trajectory, the median ages at transition are also shown. 

The table is produced by the Sequences function of Biograph. The results of the 
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simulation are stored in a Biograph object, which facilitates analysis of the simulated 

life histories.  

 

Table 2.7 Employment histories in virtual population, based on GLHS aggregate 

transition rates. 
 ncase    %  cum%    path    tr1     tr2     tr3     tr4     tr5     

1  315 31.5  31.5      JN 9.85>N                                                    

2  254 25.4  56.9    JNJN 5.78>N 15.48>J 23.07>N                                    

3  234 23.4  80.3     JNJ 6.74>N 23.59>J                                            

4   71  7.1  87.4   JNJNJ 5.86>N 13.39>J 20.09>N 26.19>J                            

5   54  5.4  92.8  JNJNJN 3.29>N 10.68>J 14.24>N 21.52>J 25.77>N                    

 

 

Constant transition rates have been used for illustrative purposes only. Usually, age-

specific transition rates are used to generate synthetic life histories. The transition rate 

that applies at a given age depends on the state occupied and the state occupied varies 

as a result of the simulation (random waiting times). It is an internal or endogenous 

time-dependent covariate, contrary to the state occupancies in the data, which are 

external covariate. External time-dependent covariates are time-dependent covariates 

whose path is not influenced by the (underlying) process being studied. The path of 

internal or endogenous time-dependent covariates is a marker for the (underlying) 

process being studied (Kalbfleish and Prentice, 2002). Suppose an individual enters 

his first job at age 21.3 (decimal year). He experiences the employment exit rate from 

age 21.3 onwards until (a) he enters a period without a job, (b) he experiences a 

competing transition, or (c) the ‘observation’ is censored, i.e. simulation is 

discontinued. In this illustration, no competing transition is considered. Hence the 

waiting time to the JN transition depends on the age-specific transition rates between 

age 21.3 and the age at which simulation is discontinued, which is determined 

exogenously. Several alternatives are possible. One is to simulate life histories 

between a lowest and a highest age. In the GLHS subsample, the lowest age at which 

someone enters the labour market is 13 and the highest age for which data are 

available is 52. Such a simulation uses the full range of age-specific transition rates. 

An alternative is to omit the lowest and highest ages because the estimated transition 

rates are not reliable due to small numbers of respondents. Another alternative is to 

specify a different observation period for each individual in the virtual population. For 

instance, the individual observation periods recorded in the sample may be imposed 

on the virtual population of the same size as the sample population. To account for 

these observation schemes, age-specific transition rates are weighted by exposure 

time. The transition rate at age 21 is multiplied by the duration of exposure, which is 

0.7 years (22.0 – 21.3). The transition rates at age 22 and higher are multiplied by 

one. The sum of the age-specific transition rates beyond age 21 is the cumulative 

intensity, computed at age 21. The waiting time to the JN transition is determined by a 

random draw from an exponential waiting time distribution associated with the 

cumulative intensity computed at age 21. The age at the JN transition is the current 

age plus the waiting time to the JN transition. Suppose a waiting time of 3.4 years is 

drawn. The individual will enter a period without a job at age 24.4. If the waiting time 

is such that the age at transition exceeds the highest age in the selected observation 

scheme, then the observation is censored at the highest age.  

 

If the number of states exceeds two, the destination state must be determined in 

addition to the time to transition. A multinomial distribution is used. They are derived 

from the origin-destination specific transition rates. If mij(x,y) is the (i,j)-transition 
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rate between ages x and y, then the probability of selecting state j, conditional on 

leaving i, is: , with . It probability is an event 

probability, not a transition probability. The probabilities are used to partition the 

interval from 0 to 1: . A random number is 

drawn from a standard uniform distribution and the interval that corresponds to its 

value determines the destination state. The method is implemented in the msm 

package.  

 

The method of estimating time to transition and destination state consists of two steps. 

The first uses the exit rate from the current state, i say, to determine the time to 

transition (exit from i). The exit rate is taken from the diagonal of the transition rate 

matrix. The second step is to determine the destination, conditional on leaving the 

current state. This method was suggested by Wolf (1986). An alternative but 

equivalent method relies on the destination-specific transition rates.  Consider an 

individual in state i at age x. For each possible destination j random waiting times are 

drawn from exponential distributions with parameters the cumulative (i,j)-transition 

rates between x and the highest age: . If transition rates are 

piecewise constant (age-specific), the cumulative hazard is piecewise linear. The 

smallest random waiting time determines the destination. The two methods rely on the 

theory of competing risks and assume that the waiting times corresponding to the 

distinct destinations are independent. Zinn (2011, pp. 177ff) shows that the two 

methods give similar results. Notice that the two methods are also consistent with 

discrete event simulation (DEVS), although only the second method stores randomly 

drawn waiting times in event queues before selecting the shortest waiting time. The 

LifePaths (Statistics Canada) and MicMac microsimulation models (Gampe and Zinn, 

2008) use event queues. The msm package uses exit rates and conditional destination 

probabilities.  

 

For illustrative purposes, the transition rates in Table 2.3, are used to generate 

synthetic employment histories for 2010 individuals, assuming that in the virtual 

(simulated) population individuals enter the labour market and are interviewed at ages 

determined by the GLHS subsample of 201 respondents. For each individual in the 

GLHS sample, 10 employment histories are simulated to reduce the Monte Carlo 

variation. For instance, individual 1 enters the labour market at age 17 and is 52 at 

interview. In the virtual population, 10 individuals enter the labour market at age 17 

and are interviewed at age 52.  Individual 4 is 22 at labour market entry and 31 at 

interview. The ages of labour market entry and interview of that respondent are 

imposed on 10 individuals in the virtual population. The simulated employment 

histories cover the same age intervals as the observed employment histories. 

Differences between simulated and observed employment trajectories are due to 

sample variation affecting the estimated transition rates and Monte Carlo variation in 

the simulation. Table 2.8 shows the main employment trajectories in the observed and 

the simulated population. The simulated trajectories should be about 10 times the 

observed trajectories because 10 simulations were performed for each observation. 

The table also shows the median ages at transition. The results differ considerably 

because in the 1981 GLHS women and men report very different employment 

histories and the transition rates are not differentiated by sex. If the transitions rates 
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are estimated separately for males and females, and employment trajectories are 

produced for the two sexes separately, the simulated trajectories are much closer to 

the observations (Table 2.8). Among females, JN is the most frequent trajectory, 

whereas it is quite rare among males. For both men and women the model accurately 

estimates the proportion of persons employed continuously throughout the 

observation period. For women, it underestimates permanent withdrawal from the 

labour market after a single employment episode and overestimates re-entry. That 

may be due to a cohort effect with younger cohorts more likely to re-enter the job 

market after a period of absence. The sample size is too small to estimate age-specific 

transition rates by sex and birth cohort.   

 

Table 2.8 Employment histories in observed and virtual population, based on age-specific 

GLHS transition rates. 
A. Observed trajectories: males and females combined 

  ncase     %   cum%   case     tr1     tr2     tr3     tr4      

1    67 33.33  33.33      J                                                         

2    54 26.87  60.20    JNJ 21.71>N 26.17>J                                         

3    44 21.89  82.09     JN 24.88>N                                                 

4    16  7.96  90.05  JNJNJ 20.83>N 23.96>J 25.62>N 29.62>J                         

5    10  4.98  95.02   JNJN 20.12>N 21.21>J 29.62>N     

 

B. Simulated trajectories: males and females combined 

   ncase     %   cum% case     tr1     tr2     tr3     tr4      

1    627 31.19  31.19     J                                                         

2    531 26.42  57.61   JNJ 22.99>N 27.33>J                                         

3    294 14.63  72.24    JN  27.2>N                                                 

4    245 12.19  84.43  JNJN 21.21>N  24.3>J 30.31>N                                 

5    218 10.85  95.27  NJNJ 20.66>N 22.31>J 26.92>N 32.43>J                         

 

C. Observed trajectories: males 

  ncase     %   cum%      case     tr1     tr2     tr3     tr4     tr5    tr6     

1    52 49.06  49.06         J                                                                                   

2    41 38.68  87.74       JNJ 21.92>N 25.33>J                                                                   

3     6  5.66  93.40     JNJNJ 18.42>N 20.17>J 22.71>N 24.04>J                                                   

4     3  2.83  96.23        JN  27.5>N                                                                           

5     3  2.83  99.06   JNJNJNJ 18.17>N 19.67>J  21.5>N 22.08>J 33.17>N 35.75>J 

 

D. Simulated trajectories: males 

  ncase     %   cum%      case     tr1     tr2     tr3     tr4     tr5     tr6      

1   518 48.87  48.87         J                                                                

2   314 29.62  78.49       JNJ  21.5>N 24.93>J                                                

3   131 12.36  90.85     JNJNJ 20.54>N 22.54>J 26.81>N 28.85>J                                

4    35  3.30  94.15      JNJN  21.3>N 23.37>J  34.4>N                                        

5    23  2.17  96.32   JNJNJNJ  20.4>N 21.65>J 22.52>N 23.85>J  28.4>N 30.62>J                

 

E. Observed trajectories: females 

  ncase     %   cum%    case     tr1     tr2     tr3     tr4     tr5     tr6  

1    41 43.16  43.16      JN 24.67>N                                                                     

2    15 15.79  58.95       J                                                                             

3    13 13.68  72.63     JNJ  21.5>N 29.58>J                                                             

4    10 10.53  83.16    JNJN 20.12>N 21.21>J 29.62>N                                                     

5    10 10.53  93.68   JNJNJ 23.21>N 26.29>J 27.62>N 32.25>J                                             

6     5  5.26  98.95  JNJNJN  18.5>N 19.67>J 27.17>N 28.42>J 32.58>N                                     

7     1  1.05 100.00 JNJNJNJ 21.92>N 22.08>J 33.83>N 35.08>J 39.83>N 40.17>J 

 

F. Simulated trajectories: females 

   ncase     %   cum%       case     tr1     tr2     tr3     tr4      

1    337 35.47  35.47         JN 25.32>N                                                                

2    183 19.26  54.74       JNJN 21.13>N  25.5>J 30.11>N                                                

3    174 18.32  73.05        JNJ 24.43>N 31.99>J                                                        

4    139 14.63  87.68          J                                                                        

5     62  6.53  94.21      JNJNJ 20.91>N 24.31>J  28.8>N 37.05>J 
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6. Conclusion 

 

Life histories are operationalised as state and event sequences. Synthetic life histories 

describe sequences that would result if individual life courses are governed by 

transition rates estimated from life history data. Transition rates link real and synthetic 

life histories. If transition rates are accurate, synthetic biographies mimic observed 

life paths. Life history data are generally incomplete. They do not cover the entire life 

span. By combining data from similar individuals, the transition rates may cover the 

entire life span. The estimation of transition rates is crucial. In this paper, two 

estimation methods are described. The first is non-parametric and the second is 

parametric, or more appropriate, partial parametric. The non-parametric approach is 

common in biostatistics. The Nelson-Aalen estimator of transition rates is 

distribution-free, it does not rely on an assumption that the data are drawn from an 

underlying probability distribution. The partial parametric method is common in 

demography, epidemiology and actuarial science. The occurrence-exposure rate 

computed for an age interval assumes that the transition rate is constant within the 

interval. Occurrence-exposure rates vary freely between intervals. The two methods 

converge when the interval gets infinitesimally small.  

 

Transition rates are used to generate synthetic biographies. Synthetic biographies 

describe life histories in terms of state occupation probabilities and expected state 

occupation times. Life expectancies, healthy life expectancies and active life 

expectancies are state occupation times. Life histories generated by the most likely 

transition rates, given the data, are expected life histories. They apply to a cohort or 

group of people. Few individuals have a life path that coincides with the expected life 

history. Microsimulation is used to determine the distribution of individual life 

histories around expected life histories. The method presented in this paper involves 

drawing individual waiting times to transitions from piecewise-exponential waiting 

time distributions. Sequences of waiting times are obtained by joining randomly 

drawn waiting times. The method, which is referred to as longitudinal 

microsimulation, is described in the paper. The added value of synthetic individual 

life paths is the information they provide on the distribution of (1) state and event 

sequences and (2) state occupation times around expected values. Synthetic individual 

biographies describe life paths in a virtual population. The virtual population closely 

resembles the real population if (1) transition rates are accurately estimated and (2) 

the observation plan applied to the real population is also applied to the virtual 

population, i.e. simulated life segments fully coincide with observed life segments.  

 

The variation of individual life histories indicates uncertainties in the data and 

uncertainties associated with drawing random numbers for probability distributions. 

The uncertainties translate into uncertainties in transition rates, transition and state 

probabilities and expected state occupation times. Uncertainties in transition rates can 

be measured assuming that transition rates or transformations of transition rates are 

normally distributed (asymptotic theory). The distributions of probabilities and 

occupation times are more complicated and cannot always be expressed analytically. 

In the paper, bootstrapping is used to estimate the uncertainties in probabilities and 

occupation times. If the cohort biography (expected life path) is computed for each 

bootstrap sample, the distribution of cohort biographies can be determined. By 

combining bootstrapping and longitudinal microsimulation, synthetic individual 

biographies can be produced that incorporate uncertainties in the data and 
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uncertainties introduced by the microsimulation (Monte Carlo variation). The latter 

results from drawing random numbers from probability distributions. The precision of 

the method of computing synthetic biographies from real data is measured by 

comparing summary statistics of virtual and real populations.  

 

The methods described in this paper are implemented in Biograph and other packages 

discussed in this book. The packages have in common that they adopt a counting 

process point of view (Aalen et al., 2008). 
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