Life histories: real and synthetic

Frans Willekens MPIDR, Rostock

November 2013

Abstract

Life history data are generally incomplete. Respondents enter observation late (left truncation) or leave early (right censoring). In survival analysis, these limitations are considered in the estimation of hazard rates. Rates are estimated from data on different respondents with different observation periods (observation windows). In multistate modeling, transition rates also integrate information on different individuals.

By combining data from different but similar individuals, life histories can be modeled. The life history that results is a synthetic life history. It is not observed and it does not tell anything about a particular individual. It tells something about the population the individual is part of. A synthetic biography summarizes information on several individuals. The collective experience is summarized in transition rates. The individual is a fictitious individual, referred to as virtual individual or statistical individual (Courgeau, 2012). A population of virtual individuals is a virtual population. The life history of such an individual is not directly observed but is an outcome of a probability model, the parameters of which are estimated from empirical data. Life histories are generated from models using microsimulation in continuous time.

Several life course indicators may be derived from transition rates. They include probabilities of significant transitions, probabilities of having reached particular stages in life, expected durations of stages of life, and expected ages at significant transitions.

The methods are illustrated using data from the German Life History Survey (GLHS). It is a subsample also used by Blossfeld and Rohwer (2002) in their book Techniques of Event History Modeling. In the paper, references are made to R packages for multistate modelling and analysis, in particular mvna, etm, msm, mstate, ELECT and Biograph.

1. Introduction

Life history data are generally incomplete. They do not cover for each individual in the study the entire life span or the life segment of interest. If data are collected retrospectively, information is missing on events and experiences after the interview date. Data collected prospectively are incomplete because events and other experiences are recorded during a limited period of time only. Information on life before or after the period of observation is missing. By combining data from different but similar individuals, statements can be made about life histories and wider segments of life can be modelled. The life history that results is a synthetic life history. It is not observed and it does not tell anything about a particular individual. It tells something about the population the individual is part of. A synthetic biography summarizes information on several individuals. It is a technique of data reduction. The synthetic biography is the life course that would result if an individual lives a life prescribed by the collective experience of similar individuals under observation. The collective experience is summarized in transition rates. These rates play a key role in generating synthetic biographies. They are estimated from life history data using the theory of statistical inference and in particular the theory of counting processes. Several life course indicators are derived from the transition rates. They include probabilities of significant transitions in life, probabilities of having reached particular stages in life at given ages, expected durations of stages of life, and expected ages at significant transitions. Transition rates and the life course indicators derived from them are sometimes combined in a table, known as the multistate life table. The multistate life table originated in demography (Rogers, 1975), but it is currently used across disciplines. The synthetic biography considered in this paper one of many plausible life histories. It is the most likely life history given the data. Individual life histories that are derived from the transition rates may deviate from the most likely life path because of chance. The distribution of individual life histories around the expected life path is documented by interval estimates of the main biographic indicators.

Two examples may clarify the concept of synthetic biography. The first relates to the length of life and the second to marriage and fertility.
a. Suppose we want to know how long a 60 -year old may expect to live. The empirical evidence consists of a 10 -year follow-up of 1000 individuals aged 60 and over. At the beginning of the observation period, some individuals are relatively young (60 years, say) while others are already old (over 90, say). During the observation period of 10 years, some individuals die. The oldest old are more likely to die than other individuals under observation. To determine the expected remaining lifetime for a 60 -year old, one could calculate the mean age at death of those who die during the observation interval. The observed mean age at death provides a wrong answer, however. It depends on the age composition of the population under observation. If the group under observation consists of many old persons, the mean age at death will be higher than for a group that consists mainly of persons in their sixties and seventies. To remove the effect of the age composition, death rates are calculated by age. The rates are then applied to a hypothetical individual who moves through life and experiences at each age the mortality level that is observed for that age. The expected age at death is 60 plus the expected
remaining lifetime or life expectancy. The life expectancy of a 60 -year old is the number of years that the individual may expect to live if at each age over 60 he experiences the age-specific mortality rate estimated during the 10 -year follow-up of 1000 individuals. At young ages, he experiences the mortality rates of individuals who were 60 recently. At older ages the mortality rates are from old persons who turned 60 many years ago.
b. The second illustration considers marriage and fertility. Suppose we want to know at what age women start marriage and at what duration of marriage they have their first child. It is not possible to follow all women until they have their first child since some will remain childless. Suppose the data are from a 5 -year follow-up survey of girls and women aged 15 to 35 at the onset of observation. At the end they are 20 to 40 . During the follow-up, the age at marriage and the age at birth of the first child are recorded. At the start of observation, some individuals are already married. Other individuals remain unmarried during the entire period of observation. They may marry after observation is discontinued or they may not marry at all. To determine the age at marriage and the duration of marriage at time of birth of the first child, the empirical evidence is summarized in age-specific transition rates: marriage rates and first birth rates. The rates are applied to hypothetical and identical individuals of age 15 assuming that at consecutive ages they experience the empirical rates of marriage and first birth. Transition rates may depend on covariates and other factors.

The synthetic biography is realistic, i.e. is an accurate representation of the population, if (a) individuals under observation are similar to individuals not included in the study, (b) the experiences in different stages of life do not change rapidly in time and (c) the intercohort variation is limited. Two issues dominate this research field: (1) the estimation of transition rates from data and (2) the generation of synthetic biographies from transition rates. The two issues constitute the subject of this paper. The estimation of transition rates is covered in Section 2. Transition and state occupation probabilities are computed from transition rates. That is the subject of Section 3. The computation of expected occupation times is covered in Section 4. The generation of synthetic life histories is discussed in Section 5. Section 6 is the conclusion.

The methods presented in this paper are illustrated using employment data from a subsample of 201 respondents of the German Life History Survey (GLHS). Two states are distinguished: employed (Job) and not employed (Nojob). Transitions are from employed to not employed (JN) and from not employed to employed (NJ). Dates of transitions are given in months; it is assumed that transitions occur at the beginning of a month. In the paper, references are made to R packages for multistate modeling and analysis, in particular mvna (Allignol, 2012; Allignol et al., 2008), etm (Allignol, 2013; Allignol et al., 2011), msm (Jackson, 2011, 2013), mstate (Putter et al., 2012; de Wreede et al., 2010, 2011), dynpred (Putter, 2011), ELECT (van den Hout, 2012) and Biograph (Willekens, 2013).

2. Transition rates

Two broad approaches for estimating transition rates are covered. In the two approaches time is treated as a continuous variable and transition rates are estimated
by relating occurrences to exposures. Continuous time means that a time period is partitioned in a large number of very small (infinitesimally small) time intervals. The two approaches differ in the time-dependence of transition rate. In the first approach, no restriction is imposed on the time dependence. The variation is entirely free. In the second approach, the variation in time is restricted to follow a particular pattern described by a transition rate model. The first approach is non-parametric; the second is parametric. The two approaches are covered by Aalen et al., (2008). The approach selected has implications for the computation of transition rates, transition and state occupation probabilities, and other life-course indicators.

In the non-parametric analysis of life history data, cumulative transition rates are estimated each time a transition occurs. The function that describes cumulative cumulative transition rates by age is a step function. It implies that between observations the transition rate is the one estimated at the last observation. The shape of the function is entirely free, not influenced by an imposed time dependence. The cumulative transition rate is said to be empirical. In the second approach the time dependence is restricted to follow an imposed pattern. A convenient and simple restriction is a constant transition rate. If the transition rate is constant, the cumulative transition rate increases linearly in time and the survival function is exponential. The restriction of constant rate may be relaxed by keeping a rate constant within relatively narrow age intervals and let the rate vary freely between age intervals. Because of the imposed time dependence, it is not needed to estimate the cumulative transition rate each time a transition occurs. It suffices to estimate the cumulative transition rate at the end of each time interval. The cumulative hazard function is not a step function. It is a piecewise-linear function: linear within age intervals with slopes varying between intervals. The two approaches differ slightly but at the limit when the time interval becomes infinitesimally small, they coincide. The first approach is common in biostatistics, while the second is common in the life-table method of demography, epidemiology and actuarial science. Covariates may be introduced in each approach. The cumulative transition rates may be estimated at each level of covariate or a regression model may be used. A (piecewise) constant transition rate is only one of the many possible restrictions imposed on the age dependence of transition rates. In demography, biostatistics, epidemiology and other fields, a large number of models are used to describe age dependencies of rates. These models are beyond the scope of this paper.

A number of software packages in R implement the non-parametric method. They include mvna and mstate. The packages msm and Biograph implement the parametric method, more particularly the piecewise-constant transition rate model: the transition rate varies freely between age intervals of one year and is constant within an age interval.

In multistate modelling, a personal attribute is represented by a state variable and a particular value of the attribute by the value of the state variable. Since a value refers to a state, the value indicates a state occupied. A change in state occupied implies a transition between states. The rate of transition at a given point in time or during a given period depends on the number of transitions and the numbers of persons under observation and at risk just before a transition occurs. In multistate modelling, the state occupied determines whether an individual is at risk. That basic principle allows complex observation schemes. Individuals may be at risk but not under observation. It
is not practical to track every individual from birth to death to record occurrences and monitor risk sets and periods at risk. Observations are incomplete because the period of observation is too short to cover the entire life span. Some individuals may not be present and at risk at the onset of observation; they enter at some later time during the observation. Individuals may leave the population at risk during the period of observation because they experience the transition of interest and are no longer at risk of the transition, or they experience an event that is unrelated to the transition but that implies a withdrawal from the population at risk. Individuals who leave the population at risk may return later and be at risk again. Counting transitions and tracking exposures necessarily take place during periods of observation. Transitions and exposures outside the observation period are not recorded. The non-occurrence of a transition during a period of observation to persons at risk of that transition is however useful information that should not be omitted. The proportion of individuals under observation and at risk that experiences a transition is an estimator of the likelihood of a transition. Individuals under observation are at risk include individuals who experience a transition and individuals who do not experience a transition. These two possibilities are represented in the likelihood function.

The measurement of time requires a time scale. Age is a logical time scale for studying life histories. Other time scales are calendar time and time since a reference event. Birth, marriage, labour market entry, and entry into observation are examples of reference events. The standard approach in survival analysis is to use time since the baseline survey or (first) entry into the study (time-on-study). Time-on-study has no explanatory power, which is acceptable if time dependence of a transition rate is not of interest, such as in the Cox model with free baseline hazard. In studies of the life course, age is an important proxy for stage of life. Korn et al. (1997) argue that time-on-study is not appropriate for predicting transition rates. They recommend age as the time scale (see also Pencina et al., 2007 and Meira-Machado et al., 2009). In this book, age is the main time scale. A transition may occur any time, hence time and age at transition are continuous random variables. T will be used to denote time or age and X will be used to denote age. A realization of T is t and a realization of X is x . Continuous time is approximated by dividing a period in very small time intervals. A small interval following time t is denoted by [$\mathrm{t}, \mathrm{t}+\mathrm{dt}$), where dt is the length of the interval, [means that t is not included in the interval and) that $t+d t$ is included. A small interval following age x is $[\mathrm{x}, \mathrm{x}+\mathrm{dx})$. When is an interval small? An interval is considered small when at most one transition occurs in the interval.

In the employment data used for illustrative purposes (GLHS), two states are distinguished (J and N) and two transitions: NJ and JN. Individuals in state N are at risk of the NJ transition and individuals in J are at risk of the JN transition. No distinction is made between jobs. Transitions between jobs are removed from the data using the Biograph function Remove. intrastate. Labour-market entry (first jobs) is selected as onset of the observation. In the original data, birth is the onset of observation. The period between birth and labour market entry is removed using Biograph's ChangeObservationWindow.e function. Table 2.1 shows the data for a selection of 10 respondents. Two variants are presented. The first shows calendar dates at transition. The second shows ages, except for the birth date, which is given in the original GLHS coding; namely, Century Month Code
(CMC). Calendar dates and ages are derived from CMC using Biograph's date_b function.

```
d <- Remove.intrastate(GLHS)
dd <- ChangeObservationWindow.e (Bdata=d,
    entrystate="J",
    exitstate=NA)
d3.a <- date_b (Bdata=dd,
    format.in="CMC",
    selectday=1,
    format.out="age")
```

The 10 individuals experience 33 episodes (20 job episodes and 13 episodes without a job). They experience 23 transitions during the observation period (13 JN transitions and 10 NJ transitions). Individual 2 is born in September 1929 and enters the labour market (first job) in May 1949 at age 19. She leaves the first job in May 1974 at age 44 and remains without a paid job until the end of the observation period in November 1981, when she is age 52. Individuals 1,5 and 7 are employed throughout the observation period. They move between jobs but they do not experience a period without a job. Individuals $3,4,6,8,9$ and 10 have several jobs, separated by periods without a job. Observation periods differ between individuals. In this paper, we estimate transition rates for the JN and NJ transitions, transition probabilities, state occupation probabilities and expected state occupation times for the subsample of 201 respondents. For illustrative purpose, a selection of the 10 respondents shown in Table 2.1 is also used. The focus is on the method and not on the application.

Table 2.1 Subsample of German Life History Survey (GLHS)

a. Calendar dates											
	ID	born	start	end	sex	path	Tr1	Tr2	Tr3	Tr	4
1	1	Mar29	Mar46	Nov81	Male	J	<NA>	<NA>	<NA>	<NA	
2	2	Sep29	May49	Nov81	Female	JN	May 74	<NA>	<NA>	$<\mathrm{NA}$	
3	67	Dec39	Feb55	Nov81	Female	JNJN	Sep58	Aug70	Mar80	<NA	
4	76	Jun51	Oct69	Nov81	Male	JNJNJ	Apr 70	May72	Jan76	Apr 7	
5	82	Jun51	Aug74	Nov81	Female	J	<NA>	<NA>	<NA>	$<\mathrm{NA}$	
6	96	Feb39	Apr57	Nov81	Female	JNJNJ	Apr62	Apr64	Feb65	Nov6	
7	99	May40	Sep58	Nov81	Male	J	<NA>	<NA>	<NA>	<NA	
8	180	Aug 40	Aug54	Nov81	Male	JNJNJ	Apr 56	Apr 59	Jul61	Jan	
9	200	Nov50	Sep68	Dec81	Male	JNJNJ	Apr 70	Jan72	Jan74	Jan7	
10	208	May40	Jul59	Nov81	Female	JNJN	May 61	Nov61	Dec62	<NA	
b. Ages											
	ID	born	start	end	sex	path		1	Tr2	Tr3	Tr 4
1	1	351	17.000	52.667	Male	J		NA	NA	NA	NA
2	2	357	19.667	52.167	Female	JN	44.	67	NA	NA	NA
3	67	480	15.167	41.917	Female	JNJN	18.7	5030.	66740	250	NA
4	76	618	18.333	30.417	Male	JNJNJ	18.8	320.9	91724	. 583	24.833
5	82	618	23.167	30.417	Female	J		NA	NA	NA	NA
6	96	470	18.167	42.750	Female	JNJNJ	23.1	6725.1	16726	. 000	29.750
7	99	485	18.333	41.500	Male	J		NA	NA	NA	NA
8	180	488	14.000	41.250	Male	JNJNJ	15.6	6718.6	66720	. 917	22.417
9	200	611	17.833	31.083	Male	JNJNJ	19.4	1721.1	16723	. 167	28.167
10	208	485	19.167	41.500	Female	JNJN	+ 21.0	00021.5	50022	. 583	NA

Individual 4 (with ID 76) will be singled out for a detailed description. He gets his first job in October 1969 at age18 and remains employed until April 1970. He is not
employed for about two years, until he gets another job in May 1972. From January to April 1976 he experiences another period without employment. The individual experiences the JN transition two times during the observation period, in April 1970 at age 18 and in January 1976 at age 24. From $1^{\text {st }}$ October 1969 to $31^{\text {st }}$ March 1970 he is at risk of the first occurrence of the JN transition and from $1^{\text {st }}$ May 1972 to $31^{\text {st }}$ December 1975 he is at risk of the second occurrence. From $1^{\text {st }}$ April 1976 he is at risk of a third occurrence but does not experience the JN transition before the end of the observation on $1^{\text {st }}$ November 1981. The individual experiences three job episodes, two end in a JN transition and one ends because observation is terminated (censored). In addition, the respondent experiences two episodes without a job. They end with a new job.

In a counting process perspective, the estimation of transition rates involves two tasks. The first is to count transitions during the observation period. The second is to track the population at risk. The two tasks are briefly described. Let k denote an individual. Transitions are denoted by the origin state and the destination state. The number of states is I and any two states are denoted by i and j . Let ${ }_{\mathrm{k}} \mathrm{N}_{\mathrm{ij}}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)$ denote the number of times individual k experiences the (i, j)-transition during a period of observation from t_{1} to t_{2}. Without loss of generality, in this section I assume that $t_{1}=0$ and represent t_{2} by t. The observation interval is therefore from 0 to t. The variable ${ }_{k} \mathrm{~N}_{\mathrm{ij}}(0, \mathrm{t})$ is denoted by ${ }_{\mathrm{k}} \mathrm{N}_{\mathrm{ij}}(\mathrm{t})$. The number of transitions cannot be predicted with certainty, hence ${ }_{\mathrm{k}} \mathrm{N}_{\mathrm{ij}}(\mathrm{t})$ is a random variable. The distribution of the random variable may be described by a probability model and, more particularly, a stochastic process model. A widely used model is the Poisson process model, where changes ('jumps') occur randomly and are independent of each other (Çinlar, 1975). The sequence of random variables $\left\{{ }_{k} \mathrm{~N}_{\mathrm{i} j}(\mathrm{t}) ; \mathrm{t} \geq 0\right\}$ is a random process, known as a counting process (Aalen et al., 2008, p. 25). The counting process is a continuous process. The increment in ${ }_{k} \mathrm{~N}_{\mathrm{ij}}(\mathrm{t})$ during the small interval between t and $\mathrm{t}+\mathrm{dt}$ is denoted by $\mathrm{d}_{\mathrm{k}} \mathrm{N}_{\mathrm{ij}}(\mathrm{t})$. It is a binary variable with possible values 0 (no transition) and 1 (transition). Individual counting processes are aggregated to obtain the aggregated process:

where K is the number of individuals in a (sample) population.
If dt is sufficiently small to make the counting process absolutely continuous, at most one transition occurs in the interval dt. A consequence is that no two individuals have the same event time.

The second task is to track the population at risk, i.e. exposed to the risk of experiencing a given transition. A main issue in survival analysis, and in multistate modelling in particular, is to determine who is at risk at time t and who is not. Individuals may experience a transition between t and $t+d t$ if and only if they are at risk at time t, i.e. just before the interval [$\mathrm{t}, \mathrm{t}+\mathrm{dt}$). If individual i is at risk at t , he/she is at risk during the infinitesimally small interval from t to $t+d t$. An individual is at risk of the (i, j)-transition if he is in state i . Let $\mathrm{k}_{\mathrm{k}} \mathrm{Y}_{\mathrm{i}}(\mathrm{t})$ be a binary variable, which takes the value of 1 if individual k is in state i at time t and 0 if the individual is not at risk. ${ }_{k} \mathrm{Y}_{\mathrm{i}}(\mathrm{t})$ is a binary random variable. The number of individuals in state i just before time t and therefore at risk of the (i,j)-transition is \boldsymbol{x}. It is often referred to as the risk set. The sequence of $\left\{\mathrm{Y}_{\mathrm{i}}(\mathrm{t}), \mathrm{t} \geq 0\right\}$ is the at risk process or exposure process, which is the process that describes the changes in the risk set or population at risk. $\mathrm{Y}_{\mathrm{i}}(\mathrm{t})$ changes when individuals enter or leave state i and when
observation starts or ends. In many studies, $\mathrm{Y}_{\mathrm{i}}(\mathrm{t})$ is large relative to numbers of (i, j) transitions. That observation will be used for estimating the variance of the transition rate.

During the observation period from 0 to t, the total duration individual k is at risk of experiencing the (i, j)-transition is $\boldsymbol{\square}$. The total duration at risk (exposure time) may be spread over multiple 'at risk' episodes. This counting process approach allows late entry, exit and re-entry in state i.

The counting process is a random process, which can be modelled by a Poisson process. The parameter of the model is the transition rate. The transition rate in the small time interval [$\mathrm{t}, \mathrm{t}+\mathrm{dt}$) is referred to as the instantaneous transition rate and is denoted by ${ }_{\mathrm{k}} \mu_{\mathrm{ij}}(\mathrm{t})$. The counting process approach to the Poisson process describes the intensity of the process in terms of the instantaneous transition rate and exposure status. It adds exposure status to the conventional description in probability theory of the Poisson process. Aalen et al. (2008) write the intensity at time t as the product of the instantaneous transition rate and the indicator function ${ }_{k} \mathrm{Y}_{\mathrm{i}}(\mathrm{t})$, which is equal to 1 if individual k is at risk just before t and 0 otherwise: x. The intensity function is the transition rate function weighted by the exposure status. If individual k is not at risk at t , the intensity is zero although the transition rate may be positive. The product ${ }_{k} \lambda_{\mathrm{ij}}(\mathrm{t}) \mathrm{dt}$ is the probability that individual k experiences the (i, j) transition during the small time interval to to $t+d t$, provided that just prior to the interval k is at risk of the (i, j)-transition, i.e. is in state i . It is the product of the intensity and the length of the interval. The probability is conditioned on being at risk. In survival analysis, that condition is usually imposed by the statement 'provided that the event has not occurred yet'. That condition applies in case of a single event, because an individual is at risk as long as (1) the event has not occurred yet and (2) the individual is under observation. In the case of repeatable transitions or different types of transitions, an individual may be under observation but not at risk. In the example of employment, an individual in state N is under observation but not at risk of the JN transition.

If at most one transition may occur during the interval dt, the probability of occurrence is equivalent to the probability that ${ }_{k} N_{i j}(t)$ changes to ${ }_{k} N_{i j}(t)+1$, the probability that the transition occurs at $\mathrm{t}, \operatorname{Pr}\left(\mathrm{d}_{\mathrm{k}} \mathrm{N}_{\mathrm{ij}}(\mathrm{t})=1\right)$, and the probability that the transition time ${ }_{k} \mathrm{~T}_{\mathrm{ij}}$ is in the $[t, \mathrm{t}+\mathrm{dt})$ interval: $\operatorname{Pr}\left(\mathrm{t} \leq{ }_{\mathrm{k}} \mathrm{T}_{\mathrm{ij}}<\mathrm{t}+\mathrm{dt}\right)$. Since $\mathrm{d}_{\mathrm{k}} \mathrm{N}_{\mathrm{ij}}(\mathrm{t})$ is a binary variable, the probability that $\mathrm{d}_{\mathrm{k}} \mathrm{N}_{\mathrm{ij}}(\mathrm{t})$ is one is equal to the expected value of $\mathrm{d}_{\mathrm{k}} \mathrm{N}_{\mathrm{ij}}(\mathrm{t})$, hence ${ }_{\mathrm{k}} \lambda_{\mathrm{ij}}(\mathrm{t}) \mathrm{dt}=\mathrm{E}\left[\mathrm{d}_{\mathrm{k}} \mathrm{N}_{\mathrm{ij}}(\mathrm{t})\right]$. Note that ${ }_{k} \mathrm{~N}_{\mathrm{ij}}(\mathrm{t})$ and its increment $\mathrm{d}_{\mathrm{k}} \mathrm{N}_{\mathrm{ij}}(\mathrm{t})$ are observations, whereas ${ }_{k} \lambda_{\mathrm{ij}}(\mathrm{t})$ is a model of the increment $\mathrm{d}_{\mathrm{k}} \mathrm{N}_{\mathrm{ij}}(\mathrm{t})$ (Poisson process model that satisfies the two conditions listed above). $\lambda_{\mathrm{k}}(\mathrm{t})$ is the intensity process of the counting process ${ }_{\mathrm{k}} \mathrm{N}_{\mathrm{ij}}(\mathrm{t})$.

If individuals are independent of each other, the intensity process of the aggregated counting process $\mathrm{N}_{\mathrm{ij}}(\mathrm{t})$ is \boldsymbol{x}. If in addition all individuals have the same hazard rate, i.e. x for all k, then the survival times are independent and identically distributed. The aggregate intensity process may be written as:

individuals in state i just before t. It is the population at risk. The model
\qquad is the multiplicative intensity model for a counting process (Aalen
et al., 2008, p. 34). $\mu_{\mathrm{ij}}(\mathrm{t})$ is a nonnegative function of t . In the multiplicative intensity model, the at risk process $\mathrm{Y}_{\mathrm{i}}(\mathrm{t})$ does not depend on unknown parameters (Aalen et al., 2008, p. 77). That condition is satisfied if the population at risk is large relative to the number of transitions. The same condition was introduced by Holford (1980) and Laird and Olivier (1981) in the context of estimating (piecewise-constant) transition rates with log-linear models. The transition rates $\mu_{\mathrm{ij}}(\mathrm{t})$ are key model parameters and a main aim of statistical analysis is to determine how they vary over time and depend on covariates. The analysis is complicated by incomplete observation of life histories.

The observed increment $\mathrm{dN}_{\mathrm{ij}}(\mathrm{t})$ of the counting process $\mathrm{N}_{\mathrm{ij}}(\mathrm{t})$ generally differs from the model estimate $\lambda_{\mathrm{ij}}(\mathrm{t}) \mathrm{dt}$ because observations do not meet the conditions imposed by the Poisson process. Aalen et al. (2008, p. 27) refer to the difference as noise and to the probability of a transition during the interval dt as signal. The noise cumulated up to time t is the martingale $\mathrm{M}_{\mathrm{ij}}(\mathrm{t})$ and $\mathrm{dM}_{\mathrm{ij}}(\mathrm{t})$ is the increment in noise during the small interval following t : $\mathrm{dM}_{\mathrm{ij}}(\mathrm{t})=\mathrm{dN}_{\mathrm{ij}}(\mathrm{t})-\lambda_{\mathrm{ij}}(\mathrm{t}) \mathrm{dt}$. The intensity process and the noise process are stochastic processes, whereas $\mathrm{N}_{\mathrm{ij}}(\mathrm{t})$ represents observations. Note
 the cumulative intensity process, that is the expected number of transitions up to time t , predicted by the Poisson model. The martingale is the difference between the counting process and the cumulative intensity process. It can be interpreted as cumulative noise. The intensity process is central to the statistical modelling of event occurrences and transitions between states. Note that the intensity process depends on the transition rate and the at risk process.

A frequently used measure in multistate modelling is the cumulative hazard

| 区 | re | aal to the increment in the cumulative hazard |
| :---: | :---: | :---: | during an infinitesimally small interval. In case of a continuous process, quantity Q . The transition rates $\mu_{\mathrm{ij}}(\mathrm{t})$ and the cumulative transition rate $\mathrm{A}_{\mathrm{ij}}(\mathrm{t})$ are estimated from the data. Two types of methods are used: the non-parameteric method and the parametric method. They are discussed below.

a. Non-parametric method

Recall that $\mathrm{N}_{\mathrm{ij}}(\mathrm{t})$ is the number of (i, j)-transitions experienced by individuals in the (sample) population during the observation interval from 0 to t and ${ }_{\mathrm{k}} \mathrm{T}_{\mathrm{ij}}$ is the time at which individual k experiences the transition from state i to stage j . T_{ij} denotes the time any individual in the (sample) population experiences an (i,j)-transition. For the estimation of empirical transition rates (non-parametric), the occurrences are ordered by time of occurrence. Let x denote the time of the n -th occurrence of the (i,j)transition experienced in the (sample) population. The number of individuals at risk just before \boxed{x} is. Consider the time interval $[\mathrm{t}, \mathrm{t}+\mathrm{dt}$). If in a population no event occurs in the interval, the natural estimate of x is zero. If a transition is recorded during the interval, the natural estimate is 1 divided by the number of individuals at risk, that is $1 / \mathrm{Y}_{\mathrm{i}}(\mathrm{t})$ or the proportion of individuals at risk that experiences a transition. Aggregating these contributions over all time intervals at
which transitions occur, up to time t, gives the estimator $\boxed{\text { of }} \mathrm{A}_{\mathrm{ij}}(\mathrm{t})$. A natural estimator of the cumulative transition rate at time t is
 numerator and denominator are aggregations over all individuals. If transition times are \triangle then the estimator is \boxtimes, where \boxtimes is the time at the n -th occurrence of the (i, j)-transition. The estimator is known as the Nelson-Aalen estimator. The estimator was initially developed by Nelson and extended to event history models and Markov processes by Aalen, who adopted a counting process formulation (see Aalen et al., 2008, pp. 70ff). The Nelson-Aalen estimator corresponds to the cumulative hazard of a discrete distribution, with all its probability mass concentrated at the observed transition times. The matrix x is a matrix of step functions with jumps at transition times.

The variance of the Nelson-Aalen estimator is

large samples, the Nelson-Aalen estimator at time t is approximately normally distributed. Therefore the 95 percent confidence interval is \boldsymbol{x}. If the sample size is small, the approximation to the normal distribution is improved by using a log-transformation giving the confidence interval

Consider the employment careers of the 10 individuals, shown in Table 2.1. To track individuals at risk, ages at entry into observation and exit from observation, and ages at transition should be ordered. Individual 8 enters observation at age 14.00 , followed by individual 3 at age 15.16. The first transition occurs at age 15.67 when individual 8 enters a period without a job. At that time, 2 individuals are at risk of the JN transition (3 and 8). The Nelson-Aalen estimator of the cumulative transition rate at that time is $1 / 2$. The next event is at age 17.00 when individual 1 enters observation. Just before that age, individual 3 is at risk in J and individual 8 in N . At age 17.00, individual 1 joins 3 in J . The next event is at age 17.83 when individual 9 enters observation. When individual 6 enters observation at age 18.17, three individuals are in J and one in N. Individuals 4 and 7 enter observation at age 18.33. At age 18.67, individual 8 enters \mathbf{J} again. Just before that age, he is the only person in N and at risk of the NJ transition, while 6 individuals are in J. Hence the estimator of the hazard is 1. The next event is at age 18.75 , when individual 3 leaves J and enters a period without a job. At that time 7 individuals are in J and at risk of the JN transition (1,3,4,6,7,8,9). The cumulative JN transition rate $1 / 2+1 / 7=0.64$. The Aalen variance is $(1 / 2)^{2}+(1 / 7)$ ${ }^{2}=0.270$. At that time, three individuals have not yet entered observation and do not contribute to the cumulative hazard estimation (2,5 and 10). The cumulative transition rate increases to age 44.67 when individual 3 enters a period without a job. At that age, the cumulative transition rate is 2.696 and the Aalen variance is 0.764 . Table 2.2 shows the Nelson-Aalen estimator based on data of the 10 respondents. The columns
are: age at entry into observation, exit from observation or transition, the population at risk just prior to the transition (nrisk), the occurrence of a transition (nevent) and censoring (ncens), the Nelson-Aalen estimator of the cumulative transition rates (cumhaz) and the Aalen estimator of the variance (var). The information is shown each time a transition occurs or a respondent enters or leaves observation. The last column is the increments in the cumulative hazards (delta). The number of events is less than the number of entries $(10)+$ the number of exits $(10)+$ the number of JN transitions (13) + the number of NJ transitions (10), because individuals 3 and 7 enter observation at the same time, individual 5 enters observation when individuals 6 and 9 experience a JN transition, and individuals 4 and 5 leave observation at the same time, as do individuals 7 and 10 . The table is produced by the mvna function of the mvna package. The last column is produced by the etm function of the etm package (see below). The following code is used:

```
library (mvna)
d.10 <- subset
    (d3.a,d3.a$ID%in%c(1,2,67,76,82,96,99,180,200,208))
attr (d.10,"format.date") <- "age"
param <- Parameters (d.10)
attr (d.10,"param") <- param
D<- Biograph.mvna (d.10)
tra <- matrix(ncol=2,nrow=2,FALSE)
tra[1, 2] <- TRUE
tra[2,1] <- TRUE
na <- mvna(data=D$D,c("J","N"),tra,"cens")
etm.0 <- etm(data=D$D,c("J","N"),tra,"cens",s=0)
gg.1 <- cbind (round(na$"J
N"$time, 4), na$n.risk[,1], unname (aperm(na$n.event, c(3
    ,2,1))[,2,1]),na$n.cens[,1],round(na$"J N"$na,4),
round(na$"J N"$var.aalen,3),round(aperm
    (etm.0$delta.na,c(3,2,1)) [, 2,1],4))
dimnames (gg.1) <- list
    (1:37,c("age","nrisk","nevent","ncens","cumhaz","var
","delta"))
gg.2 <- cbind (round(na$"N
    J"$time,4),na$n.risk[,2][na$time %in% na$"N
    J"$time],unname (aperm(na$n.event,c(3,2,1)) [,1,2]) [na
$time %in% na$"N J"$time],na$n.cens[,2][na$time %in%
na$"N J"$time],round(na$"N J"$na,4), round(na$"N
    J"$var.aalen,3),round(aperm
    (etm.0$delta.na,c(3,2,1))[,1,2][na$time %in% na$"N
    J"$time],4))
dimnames (gg.2) <- list
    (1:nrow(gg.2),c("age","nrisk","nevent","ncens","cumh
az","var","delta"))
```

with d. 10 the Biograph object for a selection of 10 respondents. Note that $D \$ \mathrm{D}$ ia an object with data of 10 respondents in mvna format.

Table 2.2 Nelson-Aalen estimator and Aalen variance of cumulative transition rates. GLHS, random subsample of 10 respondents.

Transition JN

	age nrisk	nevent	ncens cumhaz	var	delta		
1	14.0000	1	0	0	0.0000	0.000	0.0000
2	15.1667	1	0	0	0.0000	0.000	0.0000
3	15.6667	2	1	0	0.5000	0.250	0.5000
4	17.0000	1	0	0	0.5000	0.250	0.0000
5	17.8333	2	0	0	0.5000	0.250	0.0000
6	18.1667	3	0	0	0.5000	0.250	0.0000
7	18.3333	4	0	0	0.5000	0.250	0.0000
8	18.6667	6	0	0	0.5000	0.250	0.0000
9	18.7500	7	1	0	0.6429	0.270	0.1429
10	18.8333	6	1	0	0.8095	0.298	0.1667
11	19.1667	5	0	0	0.8095	0.298	0.0000
12	19.4167	6	1	0	0.9762	0.326	0.1667
13	19.6667	5	0	0	0.9762	0.326	0.0000
14	20.9167	6	1	0	1.1429	0.354	0.1667
15	21.0000	6	1	0	1.3095	0.382	0.1667
16	21.1667	5	0	0	1.3095	0.382	0.0000
17	21.5000	6	0	0	1.3095	0.382	0.0000
18	22.4167	7	0	0	1.3095	0.382	0.0000
19	22.5833	8	1	0	1.4345	0.397	0.1250
20	23.1667	7	2	0	1.7202	0.438	0.2857
21	24.5833	6	1	0	1.8869	0.466	0.1667
22	24.8333	5	0	0	1.8869	0.466	0.0000
23	25.1667	6	0	0	1.8869	0.466	0.0000
24	26.0000	7	1	0	2.0298	0.486	0.1429
25	28.1667	6	0	0	2.0298	0.486	0.0000
26	29.7500	7	0	0	2.0298	0.486	0.0000
27	30.4167	8	0	2	2.0298	0.486	0.0000
28	30.6667	6	0	0	2.0298	0.486	0.0000
29	31.0833	7	0	1	2.0298	0.486	0.0000
30	40.2500	6	1	0	2.1964	0.514	0.1667
31	41.2500	5	0	1	2.1964	0.514	0.0000
32	41.5000	4	0	1	2.1964	0.514	0.0000
33	41.9167	3	0	0	2.1964	0.514	0.0000
34	42.7500	3	0	1	2.1964	0.514	0.0000
35	44.6667	2	1	0	2.6964	0.764	0.5000
36	52.1667	1	0	0	2.6964	0.764	0.0000
37	52.6667	1	0	1	2.6964	0.764	0.0000

Transition NJ

	age	nrisk	nevent	ncens cumhaz	var	delta	
1	17.0000	1	0	0	0.0000	0.000	0.0000
2	17.8333	1	0	0	0.0000	0.000	0.0000
3	18.1667	1	0	0	0.0000	0.000	0.0000
4	18.3333	1	0	0	0.0000	0.000	0.0000
5	18.6667	1	1	0	1.0000	1.000	1.0000
6	18.8333	1	0	0	1.0000	1.000	0.0000
7	19.1667	2	0	0	1.0000	1.000	0.0000
8	19.4167	2	0	0	1.0000	1.000	0.0000
9	19.6667	3	0	0	1.0000	1.000	0.0000
10	20.9167	3	1	0	1.3333	1.111	0.3333

11	21.0000	3	0	0	1.3333	1.111	0.0000
12	21.1667	4	1	0	1.5833	1.174	0.2500
13	21.5000	3	1	0	1.9167	1.285	0.3333
14	22.4167	2	1	0	2.4167	1.535	0.5000
15	22.5833	1	0	0	2.4167	1.535	0.0000
16	23.1667	2	0	0	2.4167	1.535	0.0000
17	24.5833	4	0	0	2.4167	1.535	0.0000
18	24.8333	5	1	0	2.6167	1.575	0.2000
19	25.1667	4	1	0	2.8667	1.637	0.2500
20	26.0000	3	0	0	2.8667	1.637	0.0000
21	28.1667	4	1	0	3.1167	1.700	0.2500
22	29.7500	3	1	0	3.4500	1.811	0.3333
23	30.4167	2	0	0	3.4500	1.811	0.0000
24	30.6667	2	1	0	3.9500	2.061	0.5000
25	31.0833	1	0	0	3.9500	2.061	0.0000
26	40.2500	1	0	0	3.9500	2.061	0.0000
27	41.2500	2	0	0	3.9500	2.061	0.0000
28	41.5000	2	0	1	3.9500	2.061	0.0000
29	41.9167	1	0	1	3.9500	2.061	0.0000
30	52.1667	1	0	1	3.9500	2.061	0.0000

The time-continuous model of the counting process $\left\{\mathrm{N}_{\mathrm{ij}}(\mathrm{t}), \mathrm{t} \geq 0\right\}$ assumes that not more than one transition occurs in an interval. In practice and in particular in large samples, more than one individual may experience the transition in the same time interval (e.g. same day). If multiple transitions occur in the same interval, their times of occurrence are referred to as tied transition times. Tied transition times may be a consequence of (a) grouping and rounding or (b) time intervals that are genuinely discrete. For instance, if instead of days or months seconds are used as time units, it is unlikely that more than one transition occurs at the same time. If tied transition times are due to grouping and rounding, the interval may be divided in even smaller intervals and the transition times ordered. The increment in the Nelson-Aalen estimator of the cumulative hazard at time \boxed{x} may be written as

genuinely discrete, the increment in the Nelson-Aalen estimator at time

and d_{n} is the number of transitions recorded at time \triangle. In the presence of tied transition times, the variance of the Nelson-Aalen estimator needs to be adjusted. When tied event times are a consequence of grouping or rounding, the increment in

(2008, p. 85) report that the numerical difference between the two approaches to tie correction is usually quite small, and it is not very important which of the two one adopts.
b. Parametric method: exponential and piecewise exponential models

The Nelson-Aalen estimator is nonparametric. The shape of the hazard function is not constrained in any way. In a parametric counting process model, the time dependence of the transition rate is constrained and consequently the waiting times to a transition are constrained. It is assumed that there is a continuous-time process underlying the data. In addition, the transition rate may depend on covariates. Covariates are not considered in this paper. Two models are considered in this paper. The first is the exponential model, which imposes a constant transition rate and an exponential waiting time distribution. The second model is a piecewise exponential model, which imposes piecewise-constant transition rates. Transitions rates are assumed to be constant in age intervals of usually one year. The transition rates of consecutive age groups are unrelated, i.e. no restrictions are imposed on how the piecewise-constant rates vary with age. The estimation method therefore combines a parametric approach (within intervals) and a non-parametric approach (between intervals). Individuals are assumed to be independent and to have the same instantaneous transition rate. In other words, transition times of the individuals in the (sample) population are assumed to be independent and identically distributed. The estimation of piecewise exponential models and occurrence-exposure rates received considerable attention in the literature (see e.g. Hoem and Funck Jensen, 1982, Tuma and Hannan, 1984, Hougaard, 2000, Blossfeld and Rohwer, 2002, Aalen et al., 2008, Van den Hout and Matthews, 2008, Li et al., 2012). Mamun (2003) and Reuser et al. (2010), who study the effect of covariates on disability and mortality, impose the restriction that the piecewiseconstant transition rates (occurrence-exposure rates) increase exponentially with age. The result is a Gompertz model with piecewise constant transition rates. The choice of model is determined by the age profile of transition rates (exponential increase) and data limitations. Parametric models of transition rates covering the entire age range in multistate models have been estimated too. Van den Hout and Matthews (2008) estimate a multistate model in which the age dependence of transition rates is described by a Weibull model and Van den Hout et al. (forthcoming) use a Gompertz model. In demography, a variety of models are specified to describe age profiles of transition rates in multistate models. For an overview of models, see Rogers (1986). In biostatistics, the full parametric approach is relatively new, mainly because (1) the reliance on the semi-parametric Cox model with unrestricted baseline hazard and (2) the choice of time scale is usually not age, but time since start of the study. Interest in age increased since Korn et al. (1997) recommended using in proportional hazard models age rather than time-on-study.

In the counting process approach, the likelihood function is written in terms of the counting process ${ }_{k} \mathrm{~N}_{\mathrm{ij}}(\mathrm{t})$ and the intensity process ${ }_{k} \lambda_{\mathrm{i}}(\mathrm{t})$, where t represents age. The intensity process at age t is \boldsymbol{x}. The indicator function ${ }_{k} Y_{i}(t)$ is 1 if individual k is in under observation and in state i at t and 0 otherwise. The total occupation time in state i is $\boldsymbol{\square}$, with ω the highest age. If individuals are independent, the intensity process at t is x and x is the number of (i, j)-transitions between t and $\mathrm{t}+\mathrm{dt}$, given the instantaneous transition rate ant the exposure function. If in addition all individuals have the same hazard rate, i.e. $\mathrm{x} \quad$ for all k , then the survival times are independent and identically
distributed．The aggregate intensity process may be written as：
 where $\mathrm{Y}_{\mathrm{i}}(\mathrm{t})$ is the number of individuals under observation and in state i just before t ．If the transition rate is constant，${ }_{k} \mu_{\mathrm{ij}}(\mathrm{t})={ }_{k} \mu_{\mathrm{ij}}$ for all t and the intensity process at t is ． transition rate is piecewise－constant during the age interval from x to $\mathrm{x}+1,{ }_{\mathrm{k}} \mu_{\mathrm{ij}}(\mathrm{t})=$ ${ }_{k} \mu_{\mathrm{ij}}(\mathrm{x})$ for $\mathrm{x} \leq \mathrm{t}<\mathrm{x}+1$ and the intensity process at t is \boldsymbol{x} for $\mathrm{x} \leq \mathrm{t}<$ $x+1$ ．The intensity of leaving state i at time t ，irrespective of destination，is

Let ω denote the highest age in the study．A transition is observed if it occurs before ω ．Individual k experiences ${ }_{k} \mathrm{~N}_{\mathrm{ij}}(\omega)$ occurrences of the（ i, j ）－transition from 0 to ω ．In addition，the observation is censored in state i or in another state．Hence，the number of episodes of exposure is the number of transitions plus one．The contribution of individual k to the likelihood function is

囚

where \boldsymbol{x} is the time at the n－th occurrence of the（i，j）－transition．Since the intensity depends on the instantaneous transition rate and exposure，the likelihood function is written in terms of the counting process ${ }_{k} \mathrm{~N}_{\mathrm{ij}}(\mathrm{t})$ and its intensity process ${ }_{\mathrm{k}} \lambda_{\mathrm{ij}}(\mathrm{t})$（Aalen et al．，2008，p．210）．Notice that \qquad区 ，with the at risk function equal to one if individual k is in state i just before the transition and 0 otherwise，and ｜x ，with the at risk function equal to one if k is in i at τ ．The last term is the probability of surviving in state i between the last entry time and censoring time．The intensity x depends on the instantaneous rate of leaving i and the at risk function，which is zero except for τ larger than or equal to the time of the last transition and less than censoring time．In the traditional approach，integration is from the beginning of the period during which individual k is at risk of the（ i, j ）－transition to the end of that period．In the first term，the end is the time at the next occurrence；in the last term，it is the time at censoring．Hougaard（2000，p．181）derives the likelihood function following the traditional approach：

囚

where 国 is one if the at risk period ends in an（i，j）－transition and zero if it ends because the observation is discontinued（censored）．The counting process approach to the likelihood function is（Aalen et al．，2008，p．2010）：

with ${ }_{k} \Delta \mathrm{~N}_{\mathrm{ij}}(\mathrm{t})$ the increment of ${ }_{k} \mathrm{~N}_{\mathrm{ij}}$ at time t ．
The full likelihood is

with $\lambda_{\mathrm{i}}(\tau)$ the intensity process of the aggregated process $\mathrm{N}_{\mathrm{i}}(\mathrm{t})$.

maximum likelihood estimator of μ_{ij} is the value of μ_{ij} for which the score function is
 the likelihood that the model predicts the data. In the exponential model,
 individuals in the (sample) population. The score function is
 is the observed number of transitions (occurrences) divided by the total duration at risk (exposure), which is an occurrence-exposure rate.

In large samples, the estimator ${ }_{x}$ is approximately normally distributed around the true value of μ_{ij}, with the variance estimator | \boxed{x} |
| :--- | . A better distribution for \triangle is, however, if the logarithmic transformation is used. Only 10 transitions are needed for \boxed{x} to be approximately normally distributed around \boxed{x} with variance estimator \boldsymbol{x} (Aalen et al., 2008, p. 215).

In general the cumulative transition rate under the exponential model (occurrenceexposure rate), which increases linearly with duration, is a good approximation to the empirical cumulative transition rate (Nelson-Aalen estimator), which is a step function (Andersen and Keiding, 2002, p. 100). To improve the approximation, the time interval from 0 to ω may be partitioned in subintervals and the occurrenceexposure rate estimated for each subinterval. The exponential model turns into a piecewise exponential model with piecewise-constant transition rates. That is the common approach in demography, where age is the usual time scale with intervals of one year. The estimator of the transition rate and the variance, given above, are applied to each subinterval. Consider the aggregate counting processes $\mathrm{N}_{\mathrm{ij}}(\mathrm{t})$ and $\mathrm{Y}_{\mathrm{i}}(\mathrm{t})$, and subintervals from exact age x to exact age y (y not included). Age intervals are usually one year, but a more general interval is chosen here. The transition rate, which is constant in the interval is denoted by \boldsymbol{x}. The observed number of (i, j$)$ transitions during the interval is x and the observed exposure time in state i is \boxed{x}. Following Aalen et al. (2008, pp. 220ff), the score function is solved. The

function taking the value of one in the interval from x to y and a value of zero otherwise.

The maximum likelihood estimator of the transition rate from i to j during the interval from x to y is the occurrence-exposure rate x. Occurrenceexposure rates are approximately independent and normally distributed around their true values, and the variance of x can be estimated by x or the logarithmic transformation $\begin{array}{r} \\ \end{array}$ epidemiology and actuarial science, transition rates are usually occurrence-exposure rates and are determined by dividing occurrences by exposures. In the absence of exposure data, exposure is approximated by the product of the mid-period population and the length of the period, a method which Aalen et al. (2008, p. 222) also use.

By way of illustration of the method, aggregate transition rates and age-specific transition rates are estimated from the subsample of 210 individuals, who enter observation at labour market entry. The analysis focuses on transitions between job episodes and episodes without a job. Transitions between jobs are omitted. Biograph and some additional calculations produced the main results reported in this section. The results are compared to those generated by the msm package for multistate modelling. The 210 individuals experience 504 episodes (323 job episodes and 181 episodes without a job). The total observation time between first job entry and survey is 4,668 person-years (3,397 person-years in J and 1,271 person-years in N). They experienced 303 transitions during the observation period (181 JN transitions and 122 NJ transitions). The JN transition rate is $181 / 3397=0.0533$ per year and the NJ transition rate is $122 / 1271=0.0960$ per year. To determine the 95 percent confidence intervals of the occurrence-exposure rate, the log-transformation of the estimator is used: $\boldsymbol{\square}$. The confidence interval around the JN transition rate is
 which is $(0.0461,0.0617)$. The confidence
interval around the NJ transition rate is \qquad which is ($0.0804,0.1146$). Bootstrapping, i.e. sampling the original 201 observations with replacement, with 100 bootstrap samples produces a JN transition rate of 0.0535 with confidence interval $(0.0452,0.0636)$ and a NJ transition rate of 0.0977 with confidence interval ($0.0701,0.1264$). 500 bootstrap samples yield a JN transition rate of 0.0534 with confidence interval $(0.0 .0451,0.0629)$ and a NJ transition rate of 0.0973 with confidence interval ($0.0729,0.1254$). Bootstrapping produces confidence intervals that are somewhat larger than the analytical method.

The package msm produces the same estimates and confidence intervals. The code is:

```
d <- Remove.intrastate(GLHS)
dd <- ChangeObservationWindow.e
```

```
    (Bdata=d,entrystate="J",exitstate=NA)
data <- date_b (Bdata=dd,format.in="CMC",
    selectday=1,format.out="age",
    covs=c("marriage","LMentry"))
Dmsm <- Biograph.msm(data)
twoway2.q <- rbind(c(-0.025, 0.025),c(0.2,-0.2))
crudeinits.msm(state ~ date, ID, data=Dmsm,
    qmatrix=twoway2.q)
GLHS.msm.y <- msm( state ~ date,
    subject=ID,
    data = Dmsm,
    use.deriv=TRUE,
    exacttimes=TRUE,
    qmatrix = twoway2.q,
    obstype=2,
    control=list(trace=2,REPORT=1,
                            abstol=0.0000005),
    method="BFGS")
```

The first line removes transitions between jobs. The second line changes the observation window: observation starts at labour market entry (first job) and ends at interview. The third line converts dates in CMC into ages. The fourth line converts the Biograph object data to the long format required by the msm package. The fifth and sixth lines generate initial values for transition rates. The next line calls the msm function for estimating the transition rates. Object GLHS.msm.y contains the estimates and the 95% confidence intervals, with the row variable denoting origin and the column variable destination. State 1 is \mathbf{J} and state 2 is N .

State 1
State 2
State $1-0.05328(-0.06164,-0.04606) 0.05328(0.04606,0.06164)$ State $20.09602(0.08041,0.1147)-0.09602(-0.1147,-0.08041)$

The $m s m$ package includes a function (boot) that uses bootstrapping to produce estimates, standard errors and confidence intervals. Bootstrapping, with 100 bootstrap samples, produces the following estimates and confidence intervals: 0.0504 for the JN transition rate, with 95% confidence interval $(0.0435,0.0584)$, and 0.0909 for the NJ transition rate, with 95% confidence interval ($0.0760,0.1088$).

Consider the piecewise constant exponential model with age intervals of one year. The input data are transition counts (occurrences) and exposures by single year of age recorded by single years of age for the 201 respondents. Transition counts and exposure times are shown in Table 2.3. JN is the number of transitions from J to N and PY is the exposure time. The table also shows the state occupancies at birthdays (Occup) and the number of observations censured by age (cens). The estimate of the transition rate is r.est and the 95% confidence interval is (r.L95, r.U95). The estimate and the confidence interval are obtained using the analytical method. Bootstrapping produces the estimate b.est and the confidence interval (b.L95, b.U95). The cumulative transition rate is cumrate. Consider age 30 . Of the 201 individuals, 136 have a job on their $30^{\text {th }}$ birthday and 59 are without a job. For 25 individuals, the information is missing. They did not reach age 30 yet when observation ended at time of interview (19 were employed and 6 were without a job). Together the individuals spend 127.75 years in state J and 56.58 years in state N between the $30^{\text {th }}$ and $31^{\text {st }}$
birthdays. Notice that an individual in state J on his $30^{\text {th }}$ birthday may spend some time in state N before reaching age 31 . At age 30,2 individuals experience a JN transition and 3 a NJ transition. At that age, the JN transition rate is $2 / 127.75=0.0157$ and the NJ transition rate is $3 / 60.25=0.0530$. In Table 2.3 , r. est denotes the estimator of the transition rate. The confidence interval around the JN transition rate

at age 30 is 区	, which is ($0.0039,0.0626$). The confidence
NJ transition rate at age 30 is	㐅 ${ }^{\text {a }}$, which is

The cumulative JN transition rate at age 30 is 1.3455 and the cumulative NJ transition rate is 3.2957.

Table 2.3 Piecewise-constant exponential model: occurrences, exposures and transition rates. GLHS, 210 respondents.

State J											
	p	Y	JN	cens	r.L95	r.est	r.U95	b.L95	b.est	b. U95	cumrate
14	8	20.42	2	0	0.0245	0.0979	0.3916	0.0000	0.0932	0.2508	0.0000
15	31	33.83	3	0	0.0286	0.0887	0.2750	0.0124	0.0916	0.2037	0.0979
16	37	43.17	6	0	0.0624	0.1390	0.3094	0.0434	0.1454	0.2893	0.1866
17	60	78.25	1	0	0.0018	0.0128	0.0907	0.0000	0.0142	0.0478	0.3256
18	97	111.67	9	0	0.0419	0.0806	0.1549	0.0321	0.0732	0.1335	0.3384
19	125	137.83	11	0	0.0442	0.0798	0.1441	0.0370	0.0822	0.1277	0.4190
20	144	138.17	24	0	0.1164	0.1737	0.2592	0.1154	0.1750	0.2422	0.4988
21	138	143.42	17	0	0.0737	0.1185	0.1907	0.0691	0.1185	0.1663	0.6725
22	147	150.17	9	0	0.0312	0.0599	0.1152	0.0194	0.0565	0.1004	0.7910
23	152	151.33	10	0	0.0356	0.0661	0.1228	0.0221	0.0662	0.1180	0.8510
24	151	145.00	15	0	0.0624	0.1034	0.1716	0.0610	0.1057	0.1522	0.9170
25	142	139.00	11	0	0.0438	0.0791	0.1429	0.0418	0.0749	0.1168	1.0205
26	136	134.25	14	0	0.0618	0.1043	0.1761	0.0660	0.1088	0.1610	1.0996
27	130	131.58	6	0	0.0205	0.0456	0.1015	0.0148	0.0484	0.0863	1.2039
28	133	133.75	8	0	0.0299	0.0598	0.1196	0.0288	0.0610	0.1022	1.2495
29	135	138.08	5	2	0.0151	0.0362	0.0870	0.0075	0.0350	0.0635	1.3093
30	136	127.75	2	19	0.0039	0.0157	0.0626	0.0000	0.0159	0.0391	1.3455
31	117	108.83	5	18	0.0191	0.0459	0.1104	0.0177	0.0488	0.0866	1.3612
32	101	90.33	4	14	0.0166	0.0443	0.1180	0.0050	0.0461	0.0978	1.4071
33	84	85.08	3	0	0.0114	0.0353	0.1093	0.0054	0.0375	0.0872	1.4514
34	85	84.83	3	0	0.0114	0.0354	0.1097	0.0000	0.0359	0.0765	1.4867
35	84	86.08	1	0	0.0016	0.0116	0.0825	0.0000	0.0121	0.0419	1.5220
36	87	86.83	1	0	0.0016	0.0115	0.0818	0.0000	0.0096	0.0383	1.5337
37	86	87.58	0	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.5452
38	88	88.08	2	0	0.0057	0.0227	0.0908	0.0000	0.0253	0.0540	1.5452
39	90	89.75	1	1	0.0016	0.0111	0.0791	0.0000	0.0111	0.0383	1.5679
40	89	83.17	1	17	0.0017	0.0120	0.0854	0.0000	0.0115	0.0369	1.5790
41	73	68.08	0	12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.5910
42	61	57.17	2	8	0.0087	0.0350	0.1399	0.0000	0.0310	0.0816	1.5910
43	53	53.00	0	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.6260
44	53	52.00	2	0	0.0096	0.0385	0.1538	0.0000	0.0395	0.0894	1. 6260
45	52	52.33	1	0	0.0027	0.0191	0.1357	0.0000	0.0186	0.0731	1.6645
46	52	52.00	0	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.6836
47	52	52.00	0	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.6836
48	52	52.00	0	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.6836
49	52	51.92	0	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.6836
50	49	37.25	2	26	0.0134	0.0537	0.2147	0.0000	0.0537	0.1341	1.6836
51	23	15.67	0	17	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.7373

52	7	3.33		07	70.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.7373
53	0	0.00		0	00.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.7373
State N											
		PY	NJ	cens	r.L95	r.est	r.U95	b.L95	b.est	b. U95	cumrate
14	0	0.33	0	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
15	2	3.67	0	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
16	6	8.25	2	0	0.0606	0.2424	0.9693	0.0000	0.2712	0.6667	0.0000
17	8	8.08	3	0	0.1197	0.3713	1.1512	0.0000	0.4016	0.8662	0.2424
18	8	9.92	3	0	0.0975	0.3024	0.9377	0.0000	0.3119	0.8874	0.6137
19	14	13.67	10	0	0.3936	0.7315	1.3596	0.4371	0.7533	1.1883	0.9161
20	16	26.83	6	0	0.1005	0.2236	0.4978	0.0649	0.2084	0.3509	1.6477
21	33	33.50	11	0	0.1818	0.3284	0.5929	0.1747	0.3282	0.5313	1.8713
22	34	33.75	9	0	0.1387	0.2667	0.5125	0.1002	0.2704	0.4767	2.1996
23	38	41.17	6	0	0.0655	0.1457	0.3244	0.0524	0.1448	0.2609	2.4663
24	42	48.92	6	0	0.0551	0.1226	0.2730	0.0427	0.1227	0.2234	2.6121
25	52	55.00	3	0	0.0176	0.0545	0.1691	0.0000	0.0540	0.1136	2.7347
26	58	60.42	6	0	0.0446	0.0993	0.2210	0.0298	0.1003	0.2040	2.7892
27	66	65.17	9	0	0.0719	0.1381	0.2654	0.0520	0.1383	0.2225	2.8886
28	66	66.00	6	0	0.0408	0.0909	0.2024	0.0307	0.0924	0.1820	3.0267
29	65	61.75	11	0	0.0987	0.1781	0.3217	0.0789	0.1776	0.2892	3.1176
30	59	56.58	3	6	0.0171	0.0530	0.1644	0.0000	0.0507	0.1031	3.2957
31	54	50.83	4	9	0.0295	0.0787	0.2097	0.0079	0.0827	0.1715	3.3487
32	45	45.75	0	3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	3.4274
33	46	44.92	5	0	0.0463	0.1113	0.2674	0.0418	0.1183	0.2233	3.4274
34	45	45.17	1	0	0.0031	0.0221	0.1572	0.0000	0.0254	0.0723	3.5387
35	46	43.92	4	0	0.0342	0.0911	0.2427	0.0204	0.0944	0.2221	3.5609
36	43	43.17	0	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	3.6519
37	44	42.42	2	0	0.0118	0.0471	0.1885	0.0000	0.0425	0.1169	3.6519
38	42	41.92	4	0	0.0358	0.0954	0.2542	0.0225	0.0985	0.1932	3.6991
39	40	40.17	0	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	3.7945
40	40	36.25	4	5	0.0414	0.1103	0.2940	0.0259	0.1238	0.2564	3.7945
41	33	30.50	0	5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	3.9048
42	27	24.50	1	7	0.0057	0.0408	0.2898	0.0000	0.0386	0.1384	3.9048
43	22	22.00	0	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	3.9457
44	22	23.00	0	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	3.9457
45	23	22.67	2	0	0.0221	0.0882	0.3528	0.0000	0.0839	0.2398	3.9457
46	23	23.00	0	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	4.0339
47	23	23.00	0	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	4.0339
48	23	23.00	0	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	4.0339
49	23	22.92	0	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	4.0339
50	22	17.92	1	10	0.0079	0.0558	0.3962	0.0000	0.0588	0.2500	4.0339
51	13	8.83	0	8	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	4.0897
52	5	2.00	0	5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	4.0897
53	0	0.00	0	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	4.0897

The state occupancies at birthday are produced by the Occup function of Biograph, the transitions by the Trans function, and the transition rates and cumulative rates by the Rates.ac function.

Biograph tracks individual transitions and state occupancies (exposure times). The purpose is to show an individual's contribution to transition counts and exposure times. Consider individual with ID 76. He is born in June 1951 and gets his first job in October 1969 at age 18. He leaves employment for a period without a job in April 1970 at age 18. The job spell lasts from age 18.333 to age 18.833 , implying an exposure time of 0.5 years. The jobless period ends in May 1972 when he gets a new job. The duration of the jobless period is 20.917-18.833 $=2.084$ years, 0.1667 years before the $19^{\text {th }}$ birthday (19.000-18.8333), 1 year between the $19^{\text {th }}$ and $20^{\text {th }}$ birthdays, and 0.92 years after the $20^{\text {th }}$ birthday (20.917-20.000). In January 1976, he enters a second period without a job; it lasts until April 1976. The new employment period lasts until the interview in November 1981, when he is age 30.417. Table 2.4 shows
the states occupied at all birthdays between first job and survey date, and the exposure times by age. At exact age 18, the individual is not under observation yet (state -). He enters observation at age 18.333, when he gets his first job. Between the $18^{\text {th }}$ and $19^{\text {th }}$ birthday, respondent with ID 76 spends 0.333 years before observation (in state -), 0.5 years in J and 0.167 years in N . At age 30 , he spends 0.417 years in J and 0.518 years in the state 'censored'. The tracking of individual transitions and exposures is necessary for a correct estimation of transition rates and is a central aspect of the counting process approach. If x is an estimate of the rate of transition from i to j between exact ages x and $\mathrm{x}+1$, then the contribution of the individual to the likelihood function is \boldsymbol{x} if the individual experiences a transition between x and $x+1$, and x if he experiences no transition. The best estimate of x is the one that maximizes the likelihood function for all individuals combined.

3. Transition probabilities and state occupation probabilities

In multistate modelling, distinct types of probabilities have been identified (see e.g. Schoen, 1988, pp. 81ff). Survival probabilities, transition probabilities, and state occupation probabilities are well-known. They relate to the state occupied at a given age or at given ages. An event probability is the probability that a given transition occurs at least once during a given period. If the destination state is an absorbing state, e.g. dead, the transition probability and the event probability are the same. Otherwise they differ. The probability types are discussed in some detail. Age is denoted by x and y. State and transition probabilities will be denoted by p and event probabilities by π. The matrix of transition probabilities between ages x and y is $\mathbf{P}(\mathrm{x}, \mathrm{y})$ and the vector of state probabilities at x is $\mathbf{p}(\mathrm{x})$. The probability of a continuous stay in a state between ages x and y will be denoted by $S(x, y)$. It is the survival probability in the state; it is the probability of non-occurrence of an event (exit from the state).

The survival probability at age x is the probability of being alive at that age. In some fields, such as demography, dead is usually not a separate state in the state space. It is an absorbing state that is integrated in the diagonal of the transition matrix. The probability of being alive is the probability of being in any of the states of the state
space. In medical statistics, the absorbing state of dead is usually a separate state of the state space. In that case, the survival probability is the probability of being in a transient state. Unless specified otherwise, the state occupation probability at age x is the probability of occupying a given state at age x, conditional on being in any of the states of the state space at x , i.e. conditional on still being part of the population. The transition probability is the probability of occupying a given state at age y, conditional on occupying a given state at age x with $\mathrm{y} \geq \mathrm{x}$. All probabilities are derived from transition rates. Before deriving probabilities from rates, probability types are discussed in some depth. Probabilities are defined for periods. A period may be delineated by two ages, two transitions or by an age and a transition. The delineation results in periods of fixed or variable length. Probabilities may be conditional on being in a given state or having experienced a transition.

Probabilities are computed at a reference age. The reference age indicates the position of the observer in the life course. The reference age is particularly relevant in the presence of mortality or when the probability is conditional on the state occupied at the reference age. For instance, the probability of experiencing a period without a job between ages 30 and 40 is likely to differ between persons employed at age 30 and persons employed at age 25 . At age 30, the latter category may have a job or may be without a job. The difference is due to competing events between ages 25 and 30. In medical statistics, the reference age x from which a transition probability is estimated is known as the landmark time point and the method to select a range of reference ages as the landmark method. Individuals who experience the transition of interest before the landmark time point or who leave the population at risk for another reason (e.g. censoring) are removed from the data (Van Houwelingen and Putter, 2008; Beyersmann et al., 2012, p. 187). The landmark method is used for dynamic prediction (van Houwelingen and Putter, 2011). The central idea of dynamic prediction is that, by increasing the reference age, time-varying covariates may be updated with more recent values and predictions adjusted.

If a period is delineated by two ages, the first age is denoted by x and the second by y ($y>x$). The probability of a transition, an event or a continuous stay in a given state between ages x and y depends on competing events before and during the period. To exclude the effect of competing events before x , the probability is computed at age x . If the impact of competing events before x need to be accounted for, the probability is computed at an age lower than x. For instance the probability of impairment after age 65 depends on the likelihood of surviving to 65 . It is higher if computed at 65 than at age zero. Probabilities are computed for individual k , but the reference to k is omitted for convenience.

The probability that an individual who is in state i on his x -th birthday, will be in state j at age y is the transition probability x. It may be written as

occupied at age x. The transition probability depends on the life history. If the life history is represented by Θ, that dependence is denoted by
$\boxed{\square} \quad$. That dependence is omitted in this section on the derivation of probabilities. If the dependence on the past is omitted, the multistate process is a Markov process. A stochastic process x is a Markov process if the future is independent of the past, given the present. The time scale is continuous
(t is a continuous variable). The process is time-homogeneous if the transition probability x only depends on the age difference $y-x$ and not on age x. In lifehistory data analysis with age as the time scale, the process is time-inhomogeneous. Age matters. Transition probabilities are defined for the age interval from x to y . The probabilities are combined in a matrix of transition probabilities:

where \square is the probability that an individual who is in state i at age x will also be in state i at age y. Between x and y, the individual may move out of i and return later but before y. The reason for using matrices is that, except for a few simple cases, transition probabilities depend on all transition intensities and that requires systems of equations, which are conveniently written as matrix equations.

The interval from x to y may be partitioned into P smaller intervals: $x=x_{0}<x_{1}<x_{2} \ldots$ $\ldots<x_{P}=y$. The transition probability matrix $\mathbf{P}(x, y)$ may be written as a matrix product:

The equation is the Chapman-Kolmogorov equation for the Markov process. If the number of time points increases and the distance between them goes to zero in a uniform way, the matrix product approaches a limit termed a (matrix-valued) productintegral. The product integral is a counterpart of the usual integral in classical calculus.

State occupation probabilities at age y are derived from transition probabilities $\mathbf{P}(x, y)$ and state probabilities at age x. Let $\mathbf{p}(x)$ denote the vector of state probabilities at exact age x. The state probabilities at age y is $\mathbf{P}(x, y) \mathbf{p}(x)$.

To show the link between transition probability and (cumulative) transition rate, consider the infinitesimally small interval from τ to $\tau+\mathrm{d} \tau$ with $\mathrm{x} \leq \tau<\mathrm{y}$. The transition probability may be expressed in terms of increments of cumulative transition rates. The cumulative transition rates at time τ may be arranged in a matrix:

An element x denotes the cumulative rate at time τ of the transition from i to j. The diagonal element \square is the cumulative rate at time τ of leaving i:
 The cumulative transition rate can be a step function, with a jump each time a transition occurs, or a continuous function. The increment of \times during the interval from τ to $\tau+\mathrm{d} \tau$ is \boldsymbol{x}. The probability that the individual who is in i at τ will be in j at $\tau+\mathrm{d} \tau$ is \times. The probability that an individual who is in i at τ will be in i at $\tau+\mathrm{d} \tau$ is

probabilities between ages x and y , expressed in terms of the transition probabilities in small subintervals, is:

```
\
```

The equation is the solution to the Chapman-Kolmogorov equation. No assumption is made on the nature of the distribution of the transition probability (Aalen et al., 2008, p. 470). The distribution can be discrete or continuous. The product integral is a restatement of the Chapman-Kolmogorov equation.

If transition rates are continuous functions of age, then \square
 and x \quad. The quantity x is the probability that an individual who is in i at τ will move to j during the interval of length $\mathrm{d} \tau:$, \boldsymbol{x}. Since the interval is sufficiently small to ensure not more than one transition, a move from i to j implies that the individual will be in j at $\tau+\mathrm{d} \tau$. The probability of remaining in i during the interval of length $\mathrm{d} \tau$ is \boldsymbol{x}. The matrix expression linking the matrix of transition probabilities during the interval from τ to $\tau+\mathrm{d} \tau$ to the matrix of instantaneous transition rates is:

In the literature, the instantaneous transition rate matrix has different configurations. The configuration used in this paper; is common in demography. The first subscript denotes the origin and the second the destination. In statistics, the off-diagonal element is the transition rate instead of minus the transition rate, and the matrix is the
transpose of the matrix shown here. The reasons for choosing the configuration become clear later.

If the transition probability is a continuous function of age, a system of differential equations links transition probabilities and transition rates. The differential equations are derived from the Chapman-Kolmogorov equation. Recall that we may write

Subtraction of $\mathbf{P}(\tau, y)$ from both sides of the equation and dividing by τ-x yields
\square
and

囚

The differential equation describes continuous-time non-homogeneous Markov processes. In physics the equation is known as the master equation. In the social sciences, the master equation is less well-known but some important applications (under that name) exist (see e.g. Weidlich and Haag, 1983, 1988; Aoki, 1996; Helbing, 2010). Aoki summarizes the significance of the master equation as follows: "The master equations describe time evolution of probabilities of states of dynamic processes in terms of probability transition rates and state occupancy probabilities" (Aoki, 1996, p. 116).

To solve the matrix differential equation, we may try to generalize the solution of the scalar differential equation \boxed{x}. The solution, given the interval from x to y, is | \boxed{a} | ,with $p(x, y)$ the probability that an |
| :--- | :--- | individual who is alive at age x will be alive at age y and $\mu(\tau)$ the instantaneous death rate at age τ. The generalization \boldsymbol{x} does usually not work, however. It works only if the matrices of instantaneous transition rates commute, i.e. if the matrix multiplication \qquad for all τ.

To solve the system of differential equations, it is replaced by a system of integral equations:

```
\boxtimes
```

This equation is essentially a system of flow equations of the multistate model. The element x of x is:

x represents the number of moves or direct transitions from state j to state q between the ages x and y by an individual in state i at exact age x. The sum is the number of exits from state j by persons in i at x . The last term is the number of entries into state j by persons in i at x .

To derive an expression involving transition rates during the interval from x to y , we write

where $\mathbf{m}(x, y)$ is the matrix of transition rates. An elements $m_{i j}(x, y)(j \neq i)$ is the average transition rates during the interval from x to y and the diagonal element is the rate of leaving i: | | . Schoen (1988, p. 66) shows the same matrix |
| :--- | :--- | equation and points to the link with the flow equations commonly used in demography.

Transition probabilities serve as input in the computation of state occupation probabilities. Let $p_{i}(y)$ denote the probability that an individual who is alive at age y is in state i at that age and let $\mathbf{p}(\mathrm{y})$ denote the vector of state occupation probabilities at age y . The state probabilities at age y depend on state probabilities at an earlier age and transition probabilities, e.g. x. This equation may be applied recursively to determine state occupancies at consecutive ages. Consider age intervals of one year. If the state occupation probabilities at birth are given and the transition probabilities \square are known for $0 \leq \mathrm{x}<\mathrm{z}-1$, with z the start of the highest, open-ended age group, then a recursive application of x with $0 \leq \mathrm{x}<\mathrm{z}-1$ produces state occupation probabilities by single years of age from birth to the highest age.

The estimation of transition probabilities from data relies on the Nelson-Aalen estimator if the waiting-time distribution of a transition is not constrained and on the occurrence-exposure rate if the waiting-time distribution is (piecewise) exponential. Some packages for multistate modelling, e.g. etm and mstate, adopt the nonparametric method assuming that the multistate survival function is a step function and estimate the empirical transition matrix, while other packages, e.g. $m s m$ and Biograph, adopt the parametric method assuming that the underlying multistate process is continuous but transition rates are (piecewise) constant.
a. Non-parametric method

A logical estimator of $\mathbf{P}(\mathrm{x}, \mathrm{y})$ is $\boldsymbol{\boxed { r }}$. Since the estimator \boldsymbol{x} is a matrix of step functions with a finite number of increments in the (x, y)-interval, the product-integral is the finite matrix product

The matrix \boldsymbol{x} is the empirical transition matrix, often denoted as the AalenJohansen estimator. It is a non-parametric estimator, which generalizes the KaplanMeier estimator to Markov chains (Aalen et al., 2008, p. 122). The diagonal element is generally not equal to the Kaplan-Meier estimator. The i-th diagonal element is the probability that an individual who is in i at age x will also be in i at age y . The state may be left and re-entered during the interval. The Kaplan-Meier estimator is an estimator of the probability that an individual who is in i at age x will remain in i at least until age y . The state may not be left during the interval. The Kaplan-Meier

For the covariance of the empirical transition matrix, see Aalen et al. (2008).
Consider the selection of the GLHS data on 10 individuals. The Aalen-Johansen estimator of the transition probabilities are derived from the Nelson-Aalen estimator of the cumulative transition rates shown in Table 2.2. Consider the transition probability between ages 14 and 18.833. At age 14 , individual 8 (ID=180) enters his first job and enters observation. He leaves the first job at age 15.667 (se Table 2.1). At that time, individual $2(\mathrm{ID}=67$) had entered observation (at age 15,167). The empirical probability of transition from J to N between ages 14 and 15.667 after the job exit is $(1-1 / 2)=0.5$. The probability that the individual is without a job at age 18.833 is 28.57 percent. It is computed by the matrix multiplication:

Table 2.5 shows the results. The column etm. est gives the probability of an occurrence before t and etm . var gives the variance. The probability of no occurrence is surv. It is the empirical survival function or Kaplan-Meier estimator of the survival function. Both the Nelson-Aalen estimator and the Kaplan-Meier estimator are discrete distributions with their probability mass concentrated at the observed event times. The link between the cumulative hazard estimator and the Kaplan-Meier estimator relies on the approximation of the product integral. The product integration is the key to understanding the relation between the Nelson-Aalen and the Kaplan-Meier estimators (Aalen et al., 2008, p. 99 and p. 458). The column delta shows the increments of the cumulative hazard. The probability that an
individual who is in state J at age 14 will be in state N at age 25 is 43.27 percent. The estimate is based on all transitions before age 25 , the last one at age 24.833 . The probability of being in J at age 25 is the same as the probability of being in J at age 24.833 , since in the sample population no transition occurred between ages 24.833 and 25 . Recall that the elements of the empirical transition matrix are step functions with constant values between transition times. The probability that a 20 -year old individual who is in state J will be in N at age 25 is 41.52 percent.

The etm function of the etm package computes the Aalen-Johansen estimator of the transition probability matrix of any multistate model. The entries of the AalenJohansen estimator, which is a matrix, are empirical probabilities. The etm package is used to produce the results shown in Table 2.5. The results are for a selection of the 10 respondents used for illustration of the Nelson-Aalen estimator. The code is:

```
library (etm)
D<- Biograph.mvna (d.10)
tra <- matrix(ncol=2,nrow=2,FALSE)
tra[1, 2] <- TRUE
tra[2,1] <- TRUE
etm.0 <- etm(data=D$D,c("J","N"),tra,"cens",s=0)
```

The covariance matrix of the empirical transition matrix is derived using martingale theory (Aalen et al., 2008, pp. 124ff). The Aalen-Johansen estimator along with event counts, risk set, variance of the estimator and confidence intervals can be obtained through the summary function of the etm package:

```
summary(etm.0)$"J N"
summary(etm.0)$"N J"
```

The confidence interval is computed without transformation of the data. Transformations can be specified, however (see Beyersmann et al., 2012, p. 185).

Respondents enter observation when they start their first job and the employment status varies with age. The probability of being employed at the highest age in the sample population (53) depends on the employment status at lower ages. An individual with a job at age 18 has a 37 percent chance of also having a job at age 53. An individual with a job at age 30 has a 42 percent chance of having a job at age 53 . Because employment status varies with age the probability of being in a given state at a given higher age varies with age too. By varying the reference age, the changes in probabilities can be assessed. The method selecting a range of reference ages is the basic idea of the landmark method. In this example, the end state is a transient state. In the landmark method, the end state is an absorbing state. In multistate life-table analysis, the method of selecting different reference ages and to estimate transition probabilities conditional on states occupied at a reference age is known as the statusbased life table (Willekens, 1987).

Table 2.5 Aalen-Johansen estimator of transition probabilities. GLHS subsample of 10 individuals.					
JN transition					
	age	nrisk nevent	t etm.est	etm.var	surv
1	14.00000	10	00.0000000	0.000000000	1.0000000
2	15.16667	10	00.0000000	0.000000000	1.0000000
3	15.66667	21	10.5000000	0.125000000	0.5000000
4	17.00000	10	00.5000000	0.125000000	0.5000000
5	17.83333	20	00.5000000	0.125000000	0.5000000
6	18.16667	30	00.5000000	0.125000000	0.5000000
7	18.33333	40	00.5000000	0.125000000	0.5000000
8	18.66667	60	00.0000000	0.000000000	1.0000000
9	18.75000	71	10.1428571	0.017492711	0.8571429
10	18.83333	61	10.2857143	0.029154519	0.7142857
11	19.16667	50	00.2857143	0.029154519	0.7142857
12	19.41667	61	10.4047619	0.032056473	0.5952381
13	19.66667	50	00.4047619	0.032056473	0.5952381
14	20.91667	61	10.3690476	0.028351420	0.6309524
15	21.00000	61	10.4742063	0.028903785	0.5257937
16	21.16667	50	00.3556548	0.026799238	0.6443452
17	21.50000	60	00.2371032	0.021280425	0.7628968
18	22.41667	70	00.1185516	0.012347346	0.8814484
19	22.58333	81	10.2287326	0.020075818	0.7712674
20	23.16667	72	20.4490947	0.027585427	0.5509053
21	24.58333	61	10.5409123	0.026181931	0.4590877
22	24.83333	50	00.4327298	0.026119191	0.5672702
23	25.16667	60	00.3245474	0.023469628	0.6754526
24	26.00000	71	10.4210406	0.025223801	0.5789594
25	28.16667	60	00.3157805	0.022498163	0.6842195
26	29.75000	70	00.2105203	0.017385650	0.7894797
27	30.41667	80	00.2105203	0.017385650	0.7894797
28	30.66667	60	00.1052602	0.009886262	0.8947398
29	31.08333	70	00.1052602	0.009886262	0.8947398
30	40.25000	61	10.2543835	0.025396927	0.7456165
31	41.25000	50	00.2543835	0.025396927	0.7456165
32	41.50000	40	00.2543835	0.025396927	0.7456165
33	41.91667	30	00.2543835	0.025396927	0.7456165
34	42.75000	30	00.2543835	0.025396927	0.7456165
35	44.66667	21	10.6271917	0.075842235	0.3728083
36	52.16667	10	00.6271917	0.075842235	0.3728083
37	52.66667	10	00.6271917	0.075842235	0.3728083
NJ transition					
	age	nrisk nevent	t etm.est	etm.var	surv
1	14.00000	00	00.0000000	0.000000000	1.0000000
2	15.16667	00	00.0000000	0.000000000	1.0000000
3	15.66667	00	00.0000000	0.000000000	1.0000000
4	17.00000	10	00.0000000	0.000000000	1.0000000
5	17.83333	10	00.0000000	0.000000000	1.0000000
6	18.16667	10	00.0000000	0.000000000	1.0000000
7	18.33333	10	00.0000000	0.000000000	1.0000000
8	18.66667	$1 \quad 1$	11.0000000	0.000000000	0.0000000
9	18.75000	00	00.8571429	0.017492711	0.1428571
10	18.83333	10	00.7142857	0.029154519	0.2857143

| 11 | 19.16667 | 2 | 0 | 0.7142857 | 0.029154519 | 0.2857143 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 12 | 19.41667 | 2 | 0 | 0.5952381 | 0.032056473 | 0.4047619 |
| 13 | 19.66667 | 3 | 0 | 0.5952381 | 0.032056473 | 0.4047619 |
| 14 | 20.91667 | 3 | 1 | 0.6309524 | 0.028351420 | 0.3690476 |
| 15 | 21.00000 | 3 | 0 | 0.5257937 | 0.028903785 | 0.4742063 |
| 16 | 21.16667 | 4 | 1 | 0.6443452 | 0.026799238 | 0.3556548 |
| 17 | 21.50000 | 3 | 1 | 0.7628968 | 0.021280425 | 0.2371032 |
| 18 | 22.41667 | 2 | 1 | 0.8814484 | 0.012347346 | 0.1185516 |
| 19 | 22.58333 | 1 | 0 | 0.7712674 | 0.020075818 | 0.2287326 |
| 20 | 23.16667 | 2 | 0 | 0.5509053 | 0.027585427 | 0.4490947 |
| 21 | 24.58333 | 4 | 0 | 0.4590877 | 0.026181931 | 0.5409123 |
| 22 | 24.83333 | 5 | 1 | 0.5672702 | 0.026119191 | 0.4327298 |
| 23 | 25.16667 | 4 | 1 | 0.6754526 | 0.023469628 | 0.3245474 |
| 24 | 26.00000 | 3 | 0 | 0.5789594 | 0.025223801 | 0.4210406 |
| 25 | 28.16667 | 4 | 1 | 0.6842195 | 0.022498163 | 0.3157805 |
| 26 | 29.75000 | 3 | 1 | 0.7894797 | 0.017385650 | 0.2105203 |
| 27 | 30.41667 | 2 | 0 | 0.7894797 | 0.017385650 | 0.2105203 |
| 28 | 30.66667 | 2 | 1 | 0.8947398 | 0.009886262 | 0.1052602 |
| 29 | 31.08333 | 1 | 0 | 0.8947398 | 0.009886262 | 0.1052602 |
| 30 | 40.25000 | 1 | 0 | 0.7456165 | 0.025396927 | 0.2543835 |
| 31 | 41.25000 | 2 | 0 | 0.7456165 | 0.025396927 | 0.2543835 |
| 32 | 41.50000 | 2 | 0 | 0.7456165 | 0.025396927 | 0.2543835 |
| 33 | 41.91667 | 1 | 0 | 0.7456165 | 0.025396927 | 0.2543835 |
| 34 | 42.75000 | 0 | 0 | 0.7456165 | 0.025396927 | 0.2543835 |
| 35 | 44.66667 | 0 | 0 | 0.3728083 | 0.075842235 | 0.6271917 |
| 36 | 52.16667 | 1 | 0 | 0.3728083 | 0.075842235 | 0.6271917 |
| 37 | 52.66667 | 0 | 0 | 0.3728083 | 0.075842235 | 0.6271917 |

The following code computes the Aalen-Johansen estimators of the transition probabilities for reference ages 18, 25, 30 and 35 (see Beyersmann et al., 2012, p. 187):

```
age. points <- c(18,25,30,35)
landmark.etm <- lapply (age.points,
    function (reference.age)
        {etm(data=D$D,
        state.names=c("J","N"),
        tra=tra,"cens",
        s=reference.age) })
```

The landmark method is also implemented in the dynpred package (Putter, 2012). It is the companion package of Van Houwelingen and Putter (2011).

State occupation probabilities are derived from transition probabilities. Because all individuals are initially in J , the probabilities of being in state N is the transition probability JN with the youngest age as reference age (compare with Beyersmann et al., 2012, p. 190). In the subsample of 10 individuals, the probability of occupying state J at age 30 is 78.95 percent and the probability of being in N is 21.05 percent (Table 2.5). The 95 percent confidence intervals are ($0.531,1.000$)
(\boldsymbol{x}) and $(0.000,0.469)$ (\boldsymbol{x}), respectively. The following code produces these results:

```
dd=Biograph.mvna(d.10)
etm(data=dd$D,c("J","N"),tra,"cens",s=0)
summary(etm.0)$"J N"[26, c("P","lower","upper")]
summary(etm.0)$"N J"[26, c("P","lower","upper")]
```

where dd is the data for the 10 selected individuals (Biograph object) and 26 is the age index associated with the age at the last transition before 30 (age 29.75).

Consider now the subsample of 201 respondents. Of the 201 respondents, 160 enter the labour market (first job) before age 20. At age 20, 146 are in state J and 14 in state N . The state probabilities at age 20 are produced by the code:

$$
\text { etm. } 0<- \text { etm (data=D\$D, c("J", "N"), tra, "cens", s=0,t=20) }
$$

The states occupied at exact age 30 are obtained from the state probabilities at age 20 and the empirical transition probabilities between ages 20 and 30, \square \times

区

The following code produces the transition matrix \square
etm.20_30 <-

```
etm(data=D$D,c("J","N"),tra,"cens",s=20,t=30)
```

The product of x and x is:

```
t(etm.20_30$est[, ,99])%*%
t(etm.0$est[,,dim(etm.0$est)[3]])[,1]
```

The state occupation probabilities at age 30, $\boxed{\square}$ can be obtained by the code:
etm (data=D\$D, c ("J", "N") , tra, "cens", s=0, t=30)

Of the 160 individuals who enter the labour market by age 20, 109 are employed at age 30 and 51 are without a job. Table 2.6 shows the state probabilities at selected ages. The table shows the probabilities of occupying state J (J_est) and state N (N_est) at selected ages, and the 95 percent confidence intervals (J_lower, J_upper) and (N_lower, N_upper). The confidence intervals are computed by the summary. etm function of the etm package.

Table 2.6 Probabilities of being without a job at selected ages: non-parametric method. GLHS, 201 respondents.

	age	J_lower	J_est	J_upper	N_lower	N_est	N_upper
1	15	0.827	0.926	1.000	0.000	0.074	0.173
2	20	0.786	0.856	0.926	0.074	0.144	0.214
3	25	0.641	0.707	0.774	0.226	0.293	0.359
4	30	0.618	0.684	0.749	0.251	0.316	0.382
5	40	0.624	0.699	0.774	0.226	0.301	0.376
6	50	0.600	0.688	0.775	0.225	0.312	0.400

b. Parametric method: piecewise exponential model

If the instantaneous transition rates are constant the distribution of the waiting time to the next transition is exponential. Assume that the instantaneous transition rates are constant in the age interval from x to $\mathrm{y}: \times \mathrm{x} \quad$ for $\mathrm{x} \leq \tau<\mathrm{y}$, with $\mathrm{m}_{\mathrm{ij}}(\mathrm{x}, \mathrm{y})$ the transition rate during the (x, y)-interval. The matrix of transition probabilities is x \quad If transition rates are age-specific with age intervals of one year, then the transition probabilities between reference age x and age y is

A number of methods exists to determine the value of $\exp [-\mathbf{m}(x, y)]$. I use the Taylor series expansion. Note that for matrix $\mathbf{A}, \exp (\mathbf{A})$ may be written as a Taylor series expansion:
$\exp (\mathbf{A})=\mathbf{I}+\mathbf{A}+\frac{1}{2!} \mathbf{A}^{2}+\frac{1}{3!} \mathbf{A}^{3}+\ldots$
Hence

区

(see also Schoen, 1988, p. 72).
The estimator of the transition matrix is \square with \square the matrix of empirical occurrence-exposure rates in the (x, y)-interval:

where $N_{i j}(x, y)$ is the observed number of moves from ito j during the interval and $\mathrm{R}_{\mathrm{i}}(\mathrm{x}, \mathrm{y})$ is the exposure time in i . Exposure is measured in person-months or person-years.

In case of two states, the rate equation may be written as follows:

Consider the example with 201 respondents. The age-specific transition rates are shown in Table 2.3. The first state is J and the second N. The JN transition rate for 18year old individuals is 0.0806 and the NJ transition rate is 0.3024 . They are obtained by dividing the number of transitions by the exposure time in each state between ages 18 and 19 . The one-year transition probability matrix is:

The probability that an individual in the sample population who on his $18^{\text {th }}$ birthday has a job, will be without a job on his $19^{\text {th }}$ birthday is 6.7 percent. The probability that an 18 -year old without a job will be with a job one year later is 25.1 percent. Bootstrapping is used to generate confidence intervals. The mean transition probability produced by 100 bootstrap samples is 0.0665 for the JN transition, with 95 percent confidence interval $(0.0294,0.1043)$ and 0.2583 for the NJ transition, with 95 percent confidence interval $(0.0000,0.4611)$. The retention probabilities are 0.9335 for J , with confidence interval $(0.8957,0.9706)$ and 0.7417 for N , with confidence interval ($0.5389,1.0000$).

The state occupation probabilities at age 30 is the product of the transition probability matrix x and the state probabilities \square. In the subsample, 86 percent is employed at age 20 and 14 percent is without a job (Table 2.6). The state probabilities at age 30 are: x. It is equal to:

The 95 percent confidence intervals of the state occupation probabilities at age 30, obtained from 100 bootstrap samples, is $(0.6173,0.7556)$ for J and $(0.2444,0.3827)$ for N . The estimates and their confidence interval are close to the figures produced by the non-parametric method (Table 2.6).

4. Expected waiting times and state occupation times

State occupation times, also denoted as sojourn times and exposure times, are durations of stay in a state or stage during a given period. They indicate the lengths of episodes and are expressed in days, weeks, months or years if measured for a single individual or in person-days to person-years if measured for a population. Observed sojourn times are used to determine the exposure to the risk of an event. In this section we focus on expected sojourn times. The fundamental question is: given a set of transition rates, what is the expected sojourn time in a state? Questions on durations are omnipresent. What is the expected lifetime (life expectancy)? What is the health expectancy, i.e. how many years may a person expect to live healthy? What is the lifetime probability of disability and what is the expected age at disability for those who ever become disabled? What is the likelihood of a divorce and how many years, on average, are people married when they divorce? What is the expected duration of unemployment? What is the expected number of years of working life for persons who retire early? What these questions have in common is that they are about the length of periods between two reference points. The reference points may be events such as in the question on duration of marriage at divorce. Marriage and divorce are the two events. The reference point may be any point in time. When the second reference point is an event, the expected sojourn time is equivalent to the expected waiting time to the event.

Expected occupation times depend on transition rates between two reference ages. They also depend on the location of the observer. Suppose we want to know the number of years a person may expect to live with cardiovascular disease between ages 60 and 80. It depends on the transition rates between ages 60 and 80 , including rates of death from cardiovascular disease or other causes. It also depends on the reference age because the reference age introduces dependencies on intervening events. The expected number of years with the disease is larger for 60 -year old individuals than for 0 -year old children because the latter category may not reach age 60 .

The sojourn times spent in the different states between ages x and y by state occupied

The marginal state occupation times give the total expected sojourn time in the system by state occupied at age x (column total).

The time spent in state j between ages x and y by an individual who is in state i at exact age x is

®

and for all states of origin and states of destination:

In the above formulation, the expected occupation time in state j is conditional on being in state i at age x . The occupation time is said to be status-based; it is estimated for individuals in a given state at the reference age x . The population-based occupation time is the expected occupation time in state j beyond age x , irrespective of the state occupied at age x. It is the sum of status-based occupation times between x and y, weighted by state probabilities at age x :

probability that an individual is in state i at age x.
The expected state occupation times are derived from transition rates. Two approaches are considered: the non-parametric approach and the (piecewise-constant) exponential model.
a. Non-parametric approach

Beyersmann and Putter (2011) present a non-parametric method for estimating the expected state occupation time. Divide the period between age 0 and the highest age
ω in intervals. Intervals of one year are considered, but the method can be applied to intervals of any length. The intervals are from age $\mathrm{x}-1$ to x , for $0 \leq \mathrm{x}<\omega$. The state occupation probability at age x is \boxed{x}. A natural estimate of the expected occupation time in i beyond age x, irrespective of the state occupied at age x, is

The method assumes that an individual who is in state i at age x stays in i during the entire year preceding x and an individual who leaves i between $\mathrm{x}-1$ and x leaves at the beginning of the interval (at $x-1$). The assumption can be relaxed by reducing the length of the interval or by making alternative assumptions about ages at entry and exit. A plausible assumption is that transitions take place in the middle of the interval. That assumption is valid if the interval is sufficiently short so that at most one transition occurs during the interval. Multiple transitions during an interval (tied transitions) require an assumption about the sequence of transitions.

b. Parametric approach: exponential model

A distinction is made between expected state occupation times between two ages (closed interval) and expected state occupation times beyond a given age (open interval). The reference age may be any age at or before the start of the interval. For instance, the expected number of years in good health beyond age 65 may be computed for persons aged 65 or for persons of an age below 65 , e.g. at birth or at labour market entry. The expected state occupation time may be conditioned on the state occupied (and other characteristics) at the reference age or the first age of the closed or open interval. The expected state occupation time may also be conditioned on a future transition. Consider an employment career. The age at which a person may experience a first episode without work after a period with employment is lower for those who will ever experience an episode without work than for the average population. The expected occupation time during an age interval, conditioned on a transition occurring with certainty during that interval, is less than the expected occupation time that is not conditioned on a transition occurring. For instance, the expected duration of marriage at divorce is lower for those who divorce than for the average married population.

The time spent in state j between ages x and y by an individual who is in state i at
 an individual in i at age x may expect to spend in j between ages x and y. If the transition rates are constant in the (x, y)-age interval (exponential model), the integration of the equation leads to:

which is equal to:

provided $\mathbf{m}(\mathrm{x}, \mathrm{y})$ is not singular. The expression is also shown by Namboodiri and Suchindran (1987, p. 145), Schoen (1988, p. 101) and van Imhoff (1990). If $\mathbf{m}(x, y)$ is singular, a very small value may be added to the diagonal elements of the matrix. Izmirlian et al. (2000, p. 246), who consider the case with an absorbing state (death), suggest to replace by one the zero diagonal element corresponding to the absorbing state. I choose to add a small value $\left(10^{-8}\right)$ to the diagonal. It may be viewed as a rate of a fictitious attrition. It is too small to occur between x and y but it is large enough to make $\mathbf{m}(\mathrm{x}, \mathrm{y})$ non-singular.

Taylor series expansion of x results in the following equivalent expression for the state occupation times (Schoen, 1988, p. 73):

®

When the interval is short, the sojourn time may be approximated by the linear integration hypothesis, which implies the assumption of uniform distribution of events (linear model):

$$
{ }_{\mathrm{x}} \mathbf{L}(x, y)=\frac{y-x}{2}[\mathbf{I}+\mathbf{P}(x, y)]
$$

The linear method is usually used in demography and actuarial science. It is often referred to as the actuarial method.

The reference age may be any age at or before the start of the interval. Consider the reference age zero. The expected time newborns may expect to spend in each state between ages x and y, by state at birth, is

where $\mathbf{P}(0, \mathrm{x})$ represents the transition probabilities between ages 0 and x . When the reference age changes from age 0 to age x, the expected length of stay in the various states between ages x and y changes from an unconditional measure to a conditional measure. It becomes conditional on being present in the population at x . The measure is

provided the inverse of $\mathbf{P}(0, \mathrm{x})$ exists. The state occupation times between ages x and y , a new-born may expect, irrespective of the state occupied at birth is

The estimation of the expected state occupation times beyond a given age requires the state occupation time beyond the highest age group. If at high ages few transitions occur, the ages are often collapsed in an open-ended age group with constant transition rates. Demographers use that approach to close the life table. Let z denote the first age of the highest open-ended age group. The sojourn time in the various states beyond age z by individuals present at z is

The life expectancy at age x is the number of years an individual aged x may expect to spend in each state beyond age x, by state occupied at x or irrespective of the state
 number of years an individual who is in state i at age x may expect to spend in state j beyond age x. x is a matrix with the state at age x as the column variable and the state occupied beyond age x the row variable. It gives the expected remaining lifetime conditional on the state occupied at age x . In multistate demography, it is known as the status-based life expectancy at age x . The population-based life expectancy is the time an individual aged x may expect to spend in each of the states beyond age x, irrespective of the state occupied at age x. It is x multiplied by the vector of state occupation probabilities at age x .

If transition rates are age-specific, i.e. piecewise-constant, and the length of an age interval is one year, then the expected state occupation times at reference age x is

with \square and

The expected occupation time in state i depends on the rate of leaving i. If the exit rate between ages x and y is zero, an individual in i at age x will remain in i at least until age y . If a departure from i occurs during the (x, y)- interval, it will occur at an occupation time which is less than the expected occupation time. In other words, the expected occupation time, conditioned on a transition occurring, is less than the expected occupation time that is not conditioned on a transition occurring. Consider an individual in state i at age x . The expected waiting time to leaving i between x and y consists of two parts. The first is the state occupation time for stayers. It is equal to $y-x$. The probability of staying in i during the entire interval from x to y is the survival probability x. The second part is the waiting time to an exit from i that occurs before y. It is denoted by x. Hence the occupation time equation is

and

in i on a continuous basis before leaving, provided the exit occurs before y . The occupation time equation distinguishes stayers and leavers.

The fraction of an interval spent in a given state if a transition occurs with certainty is frequently referred to as Chiang's " a ", after the statistician Chiang who introduced it. Chiang, who developed the measure in the context of mortality, called "a" the fraction of the last year of life (Chiang, 1968, pp 190ff; 1984, pp. 142ff). Schoen (1988, p. 8 and p. 71) uses the concept of mean duration at transfer to denote the expected number of years before the transition. It is the product of Chiang's "a" (fraction of the interval) and the length of the interval. If events are uniformly distributed during the interval, the survival function is linear and "a" is half the length of the interval. If the
transition rate is constant during an interval, the waiting time to the event is exponentially distributed. Consequently, the expected time to an event that occurs with certainty is less than half the interval length. The probability that an exit from state i during the (x, y)-interval, occurs during the first half of the interval, provided it occurs with certainty during the interval, is a ratio of two distribution functions:

Consider the example and age 18. The expected occupation times in state J and N by state on the $18^{\text {th }}$ birthday is

®

A person of exactly age 18 with employment may expect to spend 0.036 years (less than half a month) without employment before reaching age 19. The 95 percent confidence interval, produced by bootstrapping, is ($0.0136,0.0635$). A person of the same age without a job may expect to be employed during 0.134 years (1.6 months) before his $19^{\text {th }}$ birthday, with confidence interval ($0.0323,0.2663$). A small figure (10^{-} ${ }^{8}$) has been added to the diagonal to prevent $\mathbf{m}(18,19)$ from being singular. A person aged 18 with employment, who leaves employment before age 19 , may expect to leave employment after \boxtimes years or 5.6 months. The Taylor series expansion gives about the same result. A sum of four terms plus the identity matrix gives \boldsymbol{x}.

The number of years between the lowest age (14) and the highest age (54) is 40 years. Since states J and N are transient states, the total numbers of years spent in the employment career between ages 14 and 54 is 40 . If a hypothetical individual starts at age 14 with a job and the employment career is governed by the occurrence-exposure rates estimated from the GLHS subsample of 201 subjects, then the expected number of years with a job is 28.66 and the number of years without a job is 11.34 . The average of the 100 bootstrap samples is 28.55 and 11.45 , respectively. The 95 percent confidence intervals are $(26.65,30.28)$ and $(9.72,13.35)$.

5. Synthetic life histories

The methods presented in the previous sections produce state probabilities and expected occupation times that are consistent with empirical transition rates. The state probabilities and the occupation times describe the expected life history, given the data. The confidence intervals around the expected values indicate the degree of uncertainty in the data. Transition rates are differentiated by age to capture the age patterns of transitions. I will use transition rates that are age-specific, i.e. the rates vary between age groups of one year but they are constant within age groups (piecewise constant). Individual life histories differ from the expected life history because of observed differences between individuals, unobserved differences and chance. The chance mechanism is the subject of this section. Observed and
unobserved differences are disregarded because they are beyond the scope of this paper. Synthetic individual life histories are generated using longitudinal microsimulation (Willekens, 2009; Zinn, 2011). The method is consistent with Discrete Event Simulation (DEV) methods.

To explain the chance mechanism, a single transition rate will do. Consider the aggregate NJ transition rate, which has been estimated at 0.096 . An individual who previously had a job (the nature of the sample) and who is currently without a job, may expect to get another job in 10.4 years (1/0.096). The expected waiting time during the first year is \qquad years. It is high because at the time the data were collected a relatively large number of respondents, in particular women, left the labour force and did not return. The probability of experiencing the event in the first year is 9.154 percent. An individual experiencing an occurrence in the first year, experiences it at 0.4920 years, on average, which is little less than 6 months. Individual waiting times are random variables; the values are distributed around these expected value. Since the transition rate is constant at 0.096 , individual waiting times are exponentially distributed with a mean of 10.4 years and a variance of 108 years, assuming no competing event intervenes in the labour market transitions. The median waiting time is 7.2 years $\left[10.4^{*} \ln (2)\right]$. To obtain individual waiting times that are consistent with these expected values, waiting times are drawn randomly from an exponential distribution with a hazard rate 0.096 or, alternatively, a mean waiting time of 10.4 years. A random draw is implemented in two steps. First, a random number is drawn from the standard uniform continuous distribution $\mathrm{U}[0,1]$. Every value between zero and one is equally likely to occur. The random number drawn represents the probability that the waiting time to the transition is less then or equal to t, where t needs to be determined. Let α denote the probability. Hence: x \quad. Suppose $\alpha=0.54$. The value of t is derived from the inverse distribution function of the exponential distribution. It is \square
 years. N draws from the uniform distribution result in N individual waiting times. If N is sufficiently large, the sample mean is close to the expected value of 10.4 years and the sample variance is close to 108 years. One experiment of 1000 draws resulted in a mean waiting time of 10.11 years and a variance of 116.5 years. Another experiment resulted in a mean waiting time of 9.89 years and a variance of 87.4 years.

A transition rate estimated from data is subject to sample variation. The rate is itself a random variable. If the number of observations is sufficiently large, the rate is a normally distributed random variable with the expected value as its mean. The 95 percent confidence interval of the NJ transition rate was estimated at (0.0804 , 0.1146). To incorporate the degree of uncertainty in the data in the generation of synthetic life histories, a transition rate may be drawn from a normal distribution with mean $\ln (0.096)$ and standard deviation \boldsymbol{x}. If the value drawn from a normal distribution is denoted by m, then the transition rate is $\exp (m)$. An alternative to drawing a transition rate from a normal distribution is to resample the data (with replacement) and to estimate the transition rate from the new sample. In this approach, the distribution of the transition rate is the distribution generated by bootstrap samples. Consider 100 bootstrap samples and 100 transition rates, one from
each sample. Each of these transition rates are used to generate 1000 individual waiting times. The collection of waiting time incorporates the effects of sample variation and the exponential distribution of waiting times. The overall average waiting time is 10.54 years and the variance is 115.00 years. The NJ transition rates estimated in the bootstrap samples vary from 0.073 to 0.140 , with mean rate 0.0967 .

The aggregate transition rates may be used to generate employment histories. The JN transition rate is 0.0533 and the NJ transition rate is 0.0960 . Recall that observations started at labour market entry (first job). Hence N refers to being without a job, after having had at least one job. The transition rate matrix is | |
| --- |
| | Everyone starts the employment history in J. The starting time is zero, meaning that the time is measured as time elapsed since labour market entry. The employment history is simulated for 30 years (simulation stop time). The transition rates are assumed to remain constant during that period. In this example, employment histories are sequences of transitions and waiting times to transitions. They are assumed to be outcomes of a continuous-time Markov model with constant rates. The simulation runs as follows. Let t denote time. An individual starts in J at time 0 . A random number is drawn from an exponential distribution with transition rate 0.0533 to determine the time to transition from J to N . One draw results in a transition at $\mathrm{t}=8.29$ years. To determine how long the individual stays in N , a random number is drawn from an exponential distribution with transition rate 0.096 . The randomly selected time to NJ transition is 4.30 years. Hence the individual starts a second job 12.59 years after labour market entry $(8 \cdot 29+4.30)$. A new random waiting time is drawn from an exponential distribution with transition rate 0.0533 to determine the time of the second JN transition. The number is 24.00 , which means that the transition would occur 36.59 years after labour market entry. The transition time exceeds the time horizon of 30 years and is not considered. When the simulation is discontinued, the individual is in state J. The function sim. msm of the $m s m$ package is used to generate the life history of a single individual. The code is:

```
m <- array(c(0.0533,-0.0533,-0.096,0.096),
    dim=c(2,2),dimnames=list(origin=c("J","N"),
    destination=c("J","N")))
bio <- sim.msm (-m,mintime=0,maxtime=30,start=1)
```

where m is the transition rate matrix shown above, mintime is the starting time of the simulation, maxtime is the ending time and start is the starting state (J is state 1 and N is state 2). The object bio has two components. The first contains the state sequence and the second the transition times.

The distribution of employment histories that are consistent with the transition rates may be obtained by simulating a large number of employment histories. In this simple illustration, the transition rates are assumed not to depend on age and to remain constant during the period of 30 years. Simulation of 1,000 employment histories results in the distribution shown in Table 2.7. The most frequent trajectory is JN, about one third of all trajectories. The trajectories JNJN and JNJ cover about one fourth each. These 3 trajectories account for 80 percent of all trajectories during a period of 30 years. For each trajectory, the median ages at transition are also shown. The table is produced by the Sequences function of Biograph. The results of the
simulation are stored in a Biograph object, which facilitates analysis of the simulated life histories.

Table 2.7 Employment histories in virtual population, based on GLHS aggregate transition rates.

ncase		\%	cum\%	path	tr1	tr2	tr3	tr4	tr5
1	315	31.5	31.5	JN	$9.85>\mathrm{N}$				
2	254	25.4	56.9	JNJN	$5.78>\mathrm{N}$	$15.48>\mathrm{J}$	$23.07>\mathrm{N}$		
3	234	23.4	80.3	JNJ	$6.74>\mathrm{N}$	$23.59>J$			
4	71	7.1	87.4	JNJNJ	$5.86>\mathrm{N}$	$13.39>J$	$20.09>N$	$26.19>J$	
5	54	5.4	92.8	JNJNJN	$3.29>\mathrm{N}$	$10.68>J$	$14.24>\mathrm{N}$	$21.52>J$	$25.77>N$

Constant transition rates have been used for illustrative purposes only. Usually, agespecific transition rates are used to generate synthetic life histories. The transition rate that applies at a given age depends on the state occupied and the state occupied varies as a result of the simulation (random waiting times). It is an internal or endogenous time-dependent covariate, contrary to the state occupancies in the data, which are external covariate. External time-dependent covariates are time-dependent covariates whose path is not influenced by the (underlying) process being studied. The path of internal or endogenous time-dependent covariates is a marker for the (underlying) process being studied (Kalbfleish and Prentice, 2002). Suppose an individual enters his first job at age 21.3 (decimal year). He experiences the employment exit rate from age 21.3 onwards until (a) he enters a period without a job, (b) he experiences a competing transition, or (c) the 'observation' is censored, i.e. simulation is discontinued. In this illustration, no competing transition is considered. Hence the waiting time to the JN transition depends on the age-specific transition rates between age 21.3 and the age at which simulation is discontinued, which is determined exogenously. Several alternatives are possible. One is to simulate life histories between a lowest and a highest age. In the GLHS subsample, the lowest age at which someone enters the labour market is 13 and the highest age for which data are available is 52 . Such a simulation uses the full range of age-specific transition rates. An alternative is to omit the lowest and highest ages because the estimated transition rates are not reliable due to small numbers of respondents. Another alternative is to specify a different observation period for each individual in the virtual population. For instance, the individual observation periods recorded in the sample may be imposed on the virtual population of the same size as the sample population. To account for these observation schemes, age-specific transition rates are weighted by exposure time. The transition rate at age 21 is multiplied by the duration of exposure, which is 0.7 years ($22.0-21.3$). The transition rates at age 22 and higher are multiplied by one. The sum of the age-specific transition rates beyond age 21 is the cumulative intensity, computed at age 21 . The waiting time to the JN transition is determined by a random draw from an exponential waiting time distribution associated with the cumulative intensity computed at age 21 . The age at the JN transition is the current age plus the waiting time to the JN transition. Suppose a waiting time of 3.4 years is drawn. The individual will enter a period without a job at age 24.4. If the waiting time is such that the age at transition exceeds the highest age in the selected observation scheme, then the observation is censored at the highest age.

If the number of states exceeds two, the destination state must be determined in addition to the time to transition. A multinomial distribution is used. They are derived from the origin-destination specific transition rates. If $\mathrm{m}_{\mathrm{ij}}(\mathrm{x}, \mathrm{y})$ is the (i, j)-transition
rate between ages x and y, then the probability of selecting state j, conditional on

probability, not a transition probability. The probabilities are used to partition the interval from 0 to $1: x$ drawn from a standard uniform distribution and the interval that corresponds to its value determines the destination state. The method is implemented in the msm package.

The method of estimating time to transition and destination state consists of two steps. The first uses the exit rate from the current state, i say, to determine the time to transition (exit from i). The exit rate is taken from the diagonal of the transition rate matrix. The second step is to determine the destination, conditional on leaving the current state. This method was suggested by Wolf (1986). An alternative but equivalent method relies on the destination-specific transition rates. Consider an individual in state i at age x . For each possible destination j random waiting times are drawn from exponential distributions with parameters the cumulative (i,j)-transition rates between x and the highest age: \boldsymbol{x}. If transition rates are piecewise constant (age-specific), the cumulative hazard is piecewise linear. The smallest random waiting time determines the destination. The two methods rely on the theory of competing risks and assume that the waiting times corresponding to the distinct destinations are independent. Zinn (2011, pp. 177ff) shows that the two methods give similar results. Notice that the two methods are also consistent with discrete event simulation (DEVS), although only the second method stores randomly drawn waiting times in event queues before selecting the shortest waiting time. The LifePaths (Statistics Canada) and MicMac microsimulation models (Gampe and Zinn, 2008) use event queues. The msm package uses exit rates and conditional destination probabilities.

For illustrative purposes, the transition rates in Table 2.3, are used to generate synthetic employment histories for 2010 individuals, assuming that in the virtual (simulated) population individuals enter the labour market and are interviewed at ages determined by the GLHS subsample of 201 respondents. For each individual in the GLHS sample, 10 employment histories are simulated to reduce the Monte Carlo variation. For instance, individual 1 enters the labour market at age 17 and is 52 at interview. In the virtual population, 10 individuals enter the labour market at age 17 and are interviewed at age 52. Individual 4 is 22 at labour market entry and 31 at interview. The ages of labour market entry and interview of that respondent are imposed on 10 individuals in the virtual population. The simulated employment histories cover the same age intervals as the observed employment histories. Differences between simulated and observed employment trajectories are due to sample variation affecting the estimated transition rates and Monte Carlo variation in the simulation. Table 2.8 shows the main employment trajectories in the observed and the simulated population. The simulated trajectories should be about 10 times the observed trajectories because 10 simulations were performed for each observation. The table also shows the median ages at transition. The results differ considerably because in the 1981 GLHS women and men report very different employment histories and the transition rates are not differentiated by sex. If the transitions rates
are estimated separately for males and females, and employment trajectories are produced for the two sexes separately, the simulated trajectories are much closer to the observations (Table 2.8). Among females, JN is the most frequent trajectory, whereas it is quite rare among males. For both men and women the model accurately estimates the proportion of persons employed continuously throughout the observation period. For women, it underestimates permanent withdrawal from the labour market after a single employment episode and overestimates re-entry. That may be due to a cohort effect with younger cohorts more likely to re-enter the job market after a period of absence. The sample size is too small to estimate age-specific transition rates by sex and birth cohort.

Table 2.8 Employment histories in observed and virtual population, based on age-specific GLHS transition rates.

6. Conclusion

Life histories are operationalised as state and event sequences. Synthetic life histories describe sequences that would result if individual life courses are governed by transition rates estimated from life history data. Transition rates link real and synthetic life histories. If transition rates are accurate, synthetic biographies mimic observed life paths. Life history data are generally incomplete. They do not cover the entire life span. By combining data from similar individuals, the transition rates may cover the entire life span. The estimation of transition rates is crucial. In this paper, two estimation methods are described. The first is non-parametric and the second is parametric, or more appropriate, partial parametric. The non-parametric approach is common in biostatistics. The Nelson-Aalen estimator of transition rates is distribution-free, it does not rely on an assumption that the data are drawn from an underlying probability distribution. The partial parametric method is common in demography, epidemiology and actuarial science. The occurrence-exposure rate computed for an age interval assumes that the transition rate is constant within the interval. Occurrence-exposure rates vary freely between intervals. The two methods converge when the interval gets infinitesimally small.

Transition rates are used to generate synthetic biographies. Synthetic biographies describe life histories in terms of state occupation probabilities and expected state occupation times. Life expectancies, healthy life expectancies and active life expectancies are state occupation times. Life histories generated by the most likely transition rates, given the data, are expected life histories. They apply to a cohort or group of people. Few individuals have a life path that coincides with the expected life history. Microsimulation is used to determine the distribution of individual life histories around expected life histories. The method presented in this paper involves drawing individual waiting times to transitions from piecewise-exponential waiting time distributions. Sequences of waiting times are obtained by joining randomly drawn waiting times. The method, which is referred to as longitudinal microsimulation, is described in the paper. The added value of synthetic individual life paths is the information they provide on the distribution of (1) state and event sequences and (2) state occupation times around expected values. Synthetic individual biographies describe life paths in a virtual population. The virtual population closely resembles the real population if (1) transition rates are accurately estimated and (2) the observation plan applied to the real population is also applied to the virtual population, i.e. simulated life segments fully coincide with observed life segments.

The variation of individual life histories indicates uncertainties in the data and uncertainties associated with drawing random numbers for probability distributions. The uncertainties translate into uncertainties in transition rates, transition and state probabilities and expected state occupation times. Uncertainties in transition rates can be measured assuming that transition rates or transformations of transition rates are normally distributed (asymptotic theory). The distributions of probabilities and occupation times are more complicated and cannot always be expressed analytically. In the paper, bootstrapping is used to estimate the uncertainties in probabilities and occupation times. If the cohort biography (expected life path) is computed for each bootstrap sample, the distribution of cohort biographies can be determined. By combining bootstrapping and longitudinal microsimulation, synthetic individual biographies can be produced that incorporate uncertainties in the data and
uncertainties introduced by the microsimulation (Monte Carlo variation). The latter results from drawing random numbers from probability distributions. The precision of the method of computing synthetic biographies from real data is measured by comparing summary statistics of virtual and real populations.

The methods described in this paper are implemented in Biograph and other packages discussed in this book. The packages have in common that they adopt a counting process point of view (Aalen et al., 2008).

References

Aalen, O.O., Ø. Borgan and H.K. Gjessing (2008) Survival and event history analysis. A process point of view. Springer, New York.

Allignol, A. (2012a) The mvna package. Nelson-Aalen estimator of the cumulative hazard in multistate models. Available at http://cran.r-project.org/web/packages/mvna/index.html

Allignol, A. (2012b) Package etm. Empirical transition matrix. Available at http://cran.r-project.org/web/packages/etm/index.html

Allignol, A., J. Beyersmann and M. Schumacher (2008) mvna: An R package for the Nelson-Aalen estimator in multistate models. R Newsletter, 8(2):48-50

Allignol, A., M. Schumacher and J. Beyersmann (2011) Empirical transition matrix of multistate models: the etm package. Journal of Statistical Software, 38(4), 15 pp.

Andersen, P.K. and N. Keiding (2002) Multi-state models for event history analysis. Statistical Methods in Medical Research, 11:91-115.

Aoki, M. (1996) New approaches to macroeconomic modeling. Evolutionary stochastic dynamics, multiple equilibria, and externatities as field effects. Cambridge University press, Cambridge, UK.

Beyersmann, J. and H. Putter (2011) A brief note on computing average state occupation times. Memo.

Beyersmann, J., M. Schumacher and A. Allignol (2012) Competing risks and multistate models with R. Springer, New York.

Blossfeld, H.P. and G. Rohwer (2002) Techniques of event history modeling. New approaches to causal analysis. Lawrence Erlbaum, Mahwah, New Jersey (2 ${ }^{\text {nd }}$ Edition).

Chiang. C.L. (1968) Introduction to stochastic processes in biostatistics. Wiley, New York. Chapter 9 reprinted in D.J. Bogue, E.E. Arriage and E.L. Anderton eds. (1993) Readings in population research methodology. Vol 2, pp. 7.84-7.97.

Chiang, C.L. (1984) The life table and its applications. R.E. Krieger Publishing, Malabar, Fl.

Çinlar, E. (1975) Introduction to stochastic processes. Prentice-Hall, Englewood Cliffs, New Jersey.

De Wreede, L.C., M. Fiocco and H. Putter (2010) The mstate package for estimation and prediction in non- and semi-parametric multi-state and competing risks models. Computer Methods and Programs in Biomedicine, doi:10.1016/j.cmpb.2010.01.001

De Wreede, L.C., M. Fiocco and H. Putter (2011) mstate: An R package for the analysis of competing risks and multistate models. . Journal of Statistical Software, 38(7).

Helbing. D. (2010) Quantitative Sociodynamics. Stochastic Methods and Models of Social Interaction Processes. Springer, Berlin.

Hoem, J.M. and U. Funck Jensen (1982) Multistate life table methodology: a probabilist critique. In: K.C. Land and A. Rogers eds. Multidimensional mathematical demography. Academic Press, New York, pp. 155-264.

Holford, T.R. (1980) The analysis of rates and of survivorship using log-linear models. Biometrics, 36:299-305.

Hougaard, P. (2000) Analysis of multistate survival data. Springer, New York.
Izmirlian, G., D. Brock, L. Ferrucci and C. Phillips (2000) Active life expectancy from annual follow-up data with missing responses. Biometrics, 56(1):244-248.

Jackson, C. (2012) The msm package.
http://cran.fiocruz.br/web/packages/msm/msm.pdf
Jackson, C. (2011) Multi-state models for panel data: the msm package for R. Journal of Statistical Software, 38(8), 28 pp.

Kalbleisch J.D. and R.L. Prentice (2002) The statistical analysis of failure time data. Wiley, New York. Second edition.

Korn, E.I., B.I. Graubard and D. Midthune (1997) Time-to-event analysis of longitudinal follow-up of a survey: choice of time-scale. American Journal of Epidemiology, 145(1):72-80.

Laird, N. and D. Olivier (1981) Covariance analysis of censored survival data using log-linear analysis techniques. Journal of the American Statistical Association, 76(374): 231-240.

Li, Y., M.H. Gail, D.L. Preston, B.I. Graubard and J.H Lubin (2012) Piecewise exponential survival times and analysis of case-control data. Statistics in Medicine, 31(13):1361-1368.

Mamun, A.A. (2003), Life history of cardiovascular disease and its risk factors. Rozenberg Publishers, Amsterdam.

Meira-Machado, L.M.et al (2009) Multi-state models for the analysis of time-toevent data. Statistical Methods in Medical Research, 18(2):195-222

Namboodiri, K. and C.M. Suchindran (1987) Life table techniques and their applications. Academic Press, Orlando.

Pencina M.J., M.G. Larson and R.B. D'Agostino (2007) Choice of time scale and its effect on significance of predictors in longitudinal studies. Statistics in Medicine, 26:1343-59.

Putter, H. (2012) Package dynpred. CRAN repository.
Putter, H., L. de Wreede and M. Fiocco (2012) Package 'mstate'. CRAN repository.
Reuser, M. (2010) The effect of risk factors on compression or expansion of disability A Multistate analysis of the U.S. Health and Retirement Study. Rozenberg Publishers, Amsterdam.

Rogers, A. (1975) Introduction to multiregional mathematical demography. Wiley, New York.

Rogers, A. (1986) Parameterized multistate population dynamics and projections. Journal of the American Statistical Association, 81(393):48-61

Schoen, R. (1988) Modeling multigroup populations. Plenum Press, New York.
Tuma, N.B. and M.T. Hannan (1984) Social dynamics. Models and methods. Academic Press, Orlando, Florida.

Van den Hout, A. (2012) ELECT: Estimation of life expectancies using continuoustime multi-state suvival models. Available at http://www.ucl.ac.uk/~ucakadl/ELECT_Manual.pdf

Van den Hout, A. and E.F. Matthews (2008). Multi-state analysis of cognitive ability data: a piecewise-constant model and a Weibull model. Statistics in Medicine 27: 5440-5455.

Van den Hout, A., E. Ogurtsova, J. Gampe and F.E. Matthews (fortcoming) Investigating healthy life expectancy using a multi-state model in the presence of miussing data and misclassification.

Van Houwelingen H.C. and H. Putter (2008) Dynamic predicting by landmarking as an alternative for multi-state modeling: an application to acute lymphoid leukemia data. Lifetime Data Analysis 14:447-463.

Van Houwelingen, H.C. and H. Putter (2011) Dynamic prediction in clinical survival analysis. Chapman and Hall/CRC Press.

Van Imhoff, E. (1990) The exponential multidimensional demographic projection model. Mathematical Population Studies, 2(3):171-182

Weidlich, W. and G. Haag (1983) Concepts and models of quantitative sociology: the dynamics of interacting populations. Springer, Berlin.

Willekens, F.J. (1987) The marital status life-table. In: J. Bongaarts, T. Burch and K.W. Wachter eds. Family demography: models and applications. Oxford: Clarendon Press, pp. 125-149.

Willekens, F.J. (2009) Continuous-time microsimulation in longitudinal analysis. In: A. Zaidi, A. Harding and P. Williamson eds. New frontiers in microsimulation modelling. Ashgate, Surrey, UK, pp. 413-436.

Wolf, D.A. (1986) Simulation methods for analyzing continuous-time event history models. Sociological Methodology, 16:283-308.
de Wreede, L., M. Fiocco and H. Putter (2011) mstate: An R package for the analysis of competing risks and multi-state models, Journal of Statistical Software, 38(7).

Zinn, S, (2011) A continuous-time microsimulation and first steps towards a multilevel approach in demography. PhD dissertation, University of Rostock, Faculty of Informatics and Electrotechnics.

