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Abstract

We study two dimensions of mortality: pace and shape. These two components
of mortality change inform us about the timing and age patterns of mortality respec-
tively. The aim of this study is to decompose changes in life expectancy into pace and
shape effects. Our new approach allows us to differentiate between the two underlying
processes in mortality and their relevance to understand the dynamics of mortality.

1 Background

In order to explain the dynamic behind changes in mortality, demographers have devel-
oped several techniques to decompose changes in life expectancy by different components
of mortality. Some methods focus on discrete differences between two life tables (Arriaga,
1984; Pollard, 1982; Pressat, 1985) while others considered continuous changes (Keyfitz,
1977; Vaupel and Canudas-Romo, 2003; Vaupel, 1986). All those methods focus on de-
composing mortality changes by age or cause of death.

A recent study by Baudisch (2011) emphasizes the importance to distinguish between
two dimension of aging for inter-species comparison: pace and shape. Pace refers to the
time aspect of aging; ”it is the time-scale on which mortality progresses” (Baudisch, 2011,
p.1). The shape refers to the age-pattern of mortality or how mortality changes with
age. In human demography, this framework could be related with concepts introduce by
the shifting mortality and compression of mortality hypotheses. The shifting mortality
hypothesis suggests a delay in the mortality schedule, but with a shape which remains the
same (Bongaarts and Feeney, 2002, 2003; Canudas-Romo, 2008). On the other hand, the
compression of mortality hypothesis suggests a change in variability in the age at death,
manifest by a rectangularization of the survival curve shape and deaths occurring in a
shorter age-interval (Fries, 1980; Kannisto, 2000).

Changes in mortality can then be produced by a change in pace or by a change in shape
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and more commonly by changes in both dimensions simultaneously. Those two dimen-
sion have the potential to inform about different mortality dynamics: shift in mortality
schedule and changes in variability. This research aims to study the respective impact
of changes in pace and shape on life expectancy. We introduce a new methodology to
decompose the change in life expectancy between two distributions by a pace and a shape
contribution.

2 Methods

2.1 Definitions and concept

A change in pace is defined here as a change in the modal age at death, while a change
in shape refers to a change in the slope of the hazard function. Changing the slope of the
hazard distribution also changes the shape of the density and survival distributions. If
there is a change of mortality between two distributions (in Figure 1 as C), we define the
”pace effect” as the hypothetical change in mortality produced if only the modal age at
death would have changed between those two distributions (in Figure 1 as A). The ”shape
effect” refers to the hypothetical change in mortality produced if only the slope of the
hazard function would have changed from one distribution to another (in Figure 1 as B).
These concepts are illustrated in Figure 1 presenting density functions of the distribution
of deaths for a simulated Gompertz mortality.

Figure 1: Illustration of the pace and shape effects in the density function of the distribution
of deaths for simulated data from a Gompertz model with intercepts α1 = 0.000097 and
α2 = 0.000007, slopes β1 = 0.1115 and β2 = 0.1300 and modal ages at death M1 = 82.9
and M2 = 91.9
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We present first the methodology based on Gompertz model. We need to start from two
known hazard functions (µx) defined as:

µ1
x = α1eβ

1x

µ2
x = α2eβ

2x

2



where αi and βi correspond to the intercept and slopes in the Gompertz model for distri-
bution i. If mortality can be decomposed by those two dimensions, then we can find the
equivalences:

e2
x − e1

x = (esx − e1
x) + (epx − e1

x) = ∆s + ∆p (1)

and
µ2
x − µ1

x = (µsx − µ1
x) − (µpx − µ1

x) (2)

where eix is the life expectancy at age x for distribution i, and we denote the life expectancy
from the pace and shape effects as epx and esx respectively.

2.2 Shape effect

To estimate the shape effect we assume that the modal age at death (M) stays constant
at the value of M1 during the change between the two distributions. However, the shape
changes from a slope of mortality of β1 to β2. The modal age at death in a Gompertz
distribution is defined as:

M =
1

β
ln(

1

α
).

Lets M s and βs be the modal age at death and the slope when only shape changes are
observed. Given the constraints of fixed mode, M s = M1, and changing slope, βs = β2,
the parameter αs is restricted to be:

αs =
1

e
β2

β1 ln( 1
α1 )

.

Resulting in a shape hazard effect, µsx:

µsx = eβ
2(x−M1). (3)

It can be mathematically shown that equation 3 equals to:

µsx = µ2
xe
β2∆, (4)

in other words a shift of µ2
x by ∆, where ∆ = M2 −M1.

Under a Gompertz distribution, the survival function (lx) and life expectancy at age
x (ex) are:

lx = e−
∫ ω
x µada = e

−α
β

[eβx−1]
(5)

ex =

∫ ω

x
lada. (6)

Life expectancy where only shape of mortality is operating is calculated from substituting
equation 4 in the equation 6 for life expectancy as

esx =

∫ ω

x
e

−α2

β2 [eβ
2(a+∆)−1]

da. (7)

The shape contribution to the change in life expectancy can be calculated as (esx−e1
x) = ∆s

x.
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2.3 Pace effect

The pace effect is estimated in a similar fashion as the shape effect. However, now we
assume a change in the modal age at death from M1 to M2, but the slope of mortality
remains fixed to β1: Mp = M2 and βp = β1. The hazard for the pace effect is:

µpx = eβ
1(x−M2), (8)

or in terms of difference in modal ages at death as

µpx = µ1
xe

−β1∆. (9)

The pace contribution to the change in life expectancy would then be (epx − e1
x) = ∆p

x,
where the expression for life expectancy when only the pace effect is operating (epx) is
found by substituting equation 9 in equation 6 as

epx =

∫ ω

x
e

−α1

β1 [eβ
1(a−∆)−1]

da. (10)

2.4 Interaction effect

To have the equivalence shown by equation 2, an interaction effect needs to be added. By
solving equation 2, we find an interaction effect equal to :

e(β1−β2)(M2−M1). (11)

In most cases, this number is going to be small and negligible as the differences in slopes
are small-scaled and, in most of cases, negative.

3 Illustrations: effect on mortality of eliminating cancer for
French women in 1999

3.1 Using Gompertz

Figure 2 shows women’s mortality for France in 1999 with and without cancer, fitted with
a Gompertz model. The respective life expectancy at age 15 for the four distributions
(total (et = e1 ), without cancer (e−i = e2 ), pace (ep) and shape (es)) are : et = 63.61,
e−i = 70.05, ep = 65.75 and es = 67.91. The interaction factor being very small, ∆s and
∆p sum up very closely to the difference between e−i and et. Around 2/3 of the change
of eliminating cancer results from a shape effect and 1/3 from a pace effect.

e−i − et ≈ ∆s + ∆p = (es − et) + (ep − et)

6.45 ≈ 4.30 + 2.14

3.2 Applied to observed data

The Gompertz model is not offering a good fit to the mortality without cancer in France
when a bigger range of ages is considered than ages 30 to 90. It could however be possible
to estimate the pace and shape contribution to the change in life expectancy from the
observed µx and in a discrete way, by using the life table aging rates by age (LARx),
which equal to ln(µx) − ln(µx−1) instead of the β from the Gompertz. The modal age at
death is then calculated from the observed death distribution.
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Figure 2: Hazard, density and survival functions comparison between total mortality and
mortality without cancer, fitted with Gompertz model, and their pace and shape effect,
French women in 1999
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Figure 3: Observed hazard, density and survival functions comparison between total mor-
tality and mortality without cancer and their pace and shape effect, French women in 1999

20 40 60 80 100

−
8

−
6

−
4

−
2

0

Hazard functions (ux)

Ages

lo
g(

ux
)

Total
Without cancer
pace only
shape only

40 50 60 70 80 90 100 110

0
10

00
20

00
30

00
40

00
50

00

Density functions (dx)

Ages

dx

Total
Without cancer
pace only
shape only

20 40 60 80 100

0e
+

00
2e

+
04

4e
+

04
6e

+
04

8e
+

04
1e

+
05

Survival functions (lx)

Ages

lx

Total
Without cancer
pace only
shape only

The observed life expectancy at age 15 is then : et = 68.00, e−i = 70.92, ep = 69.14 and
es = 69.77. As with the Gompertz, changes in eliminating cancer are still driven by the
changes in shape (3/5 of the change).

e−i − et ≈ ∆s + ∆p = (es − et) + (ep − et)

2.92 ≈ 1.77 + 1.15

In further research, the above methodology will also be applied to compare pace and shape
changes through years, more populations, and other causes of death.
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